Solutions
(a) Circuit:

For noise

(i) Gain? $\frac{V_{\text {out }}}{V_{x}}=g_{m} \cdot R_{L}$

$$
A_{v}=\frac{V_{o u t}}{V_{i n}}=g_{m} \cdot R_{L}\left(\frac{\frac{1}{\delta_{m}}}{\frac{1}{\delta_{m}+R_{s}}}\right)=g_{m} \cdot R_{L}\left(\frac{1}{1+g_{m} \cdot R_{s}}\right)
$$

When wed as an LHA, select $g_{m}=\frac{1}{R_{s}} \Rightarrow$

$$
A_{V}=\frac{R_{L}}{2 R_{S}}
$$

ii) Noise from Mi, $\overline{V_{n, \text { out M }}^{2}}=\frac{4 k T_{8}}{\delta m} \cdot\left(\frac{R_{L}}{R_{s}+\frac{1}{\delta m}}\right)^{2}=k T \gamma \cdot \frac{R_{L}^{2}}{R_{s}}$

Noise from $R_{L}=V_{n, \text { out, } R_{L}}^{2}=4 \pi T R_{L}$
ii) NF: $1+\frac{\overline{V_{n}^{2}, \text { oat. } m_{i}}+\overline{V_{n, \text { out. Rc }}^{2}}}{A_{v}{ }^{2} \cdot \overline{V_{n}^{2}, R s}}=$
(a) caul.

$$
\begin{aligned}
& =1+K T \gamma \frac{R_{L}}{R_{j}}+4 K T R_{L} \\
& =1+ \\
& \left(\frac{R_{L}}{2 R_{s}}\right)^{2} \cdot{ }^{2} k T R_{s} \quad \frac{k T R_{L}^{2}}{R_{s}}=1+\frac{}{}= \\
& =1+\gamma+4 \frac{R_{s}}{R_{L}} \quad N F
\end{aligned}
$$

1 .) For gate noise, add another voltage source on the gate: $\overline{V_{n}^{2} o u t_{1} m / g}=\frac{4 k T R_{G}}{3} \cdot\left(\frac{R_{L}}{2 R_{S}}\right)^{2}=$

$$
\begin{aligned}
&=\frac{k T \cdot R_{G} \cdot R_{L}^{2}}{3 R_{S}^{2}} \\
& \Rightarrow N F=\frac{k T \gamma \frac{R_{L}^{2}}{R_{J}}+\frac{k T R_{G} R_{L}^{2}}{3 R_{S}^{2}}+4 k T R_{L}}{k T \frac{R_{L}^{2}}{\bar{R}_{S}}}= \\
& 1+\gamma+\frac{R_{G}}{3 R_{S}}+4 \frac{R_{S}}{R_{L}} \quad N F
\end{aligned}
$$

2.

a. See Example 5.3 in Razavi. New value for $Q=2450 /(2550-2350)=12.5$
b. On-chip L are usually much more lossy than on-chip C.
c. In the L, the Q value is mainly limited by the series resistance in the metallization and, at higher frequencies, the losses in the substrate.
3.
a.

LO-IF feedthrough: measured level of the $900-\mathrm{MHz}$ output component in the absence of an RF signal.

$$
\begin{aligned}
& \xrightarrow{\sim} \frac{2 \pi}{\omega_{L O}} \leftarrow \\
& i_{L O}{ }^{\prime}(t)=\frac{1}{2}+\frac{2}{\pi} \cos \omega_{L O}(t)-\frac{2}{3 \pi} \cos 3 \omega_{L O}(t)+\frac{2}{5 \pi} \cos 5 \omega_{L O}(t)-\ldots \\
& i_{L O}{ }^{-}(t)=\frac{1}{2}-\frac{2}{\pi} \cos \omega_{L O}(t)+\frac{2}{3 \pi} \cos 3 \omega_{L O}(t)-\frac{2}{5 \pi} \cos 5 \omega_{L O}(t)+\ldots \\
& i_{R F}(t)=I_{1}+I_{R F} \cos \omega_{R F} t
\end{aligned}
$$

No RF signal: $I_{R F}=0 \Rightarrow \quad i_{R F}(t)=I_{1}$
The output current at IF is given by:
$i_{l F}{ }^{+}(t)=i_{L O}{ }^{+}(t) \times i_{R F}(t)=\left[\frac{1}{2}+\frac{2}{\pi} \cos \omega_{L O}(t)-\frac{2}{3 \pi} \cos 3 \omega_{L O}(t)+\frac{2}{5 \pi} \cos 5 \omega_{L O}(t)-\ldots\right] \cdot\left(I_{1}\right)$
$=\frac{I_{1}}{2}+\frac{2 I_{1}}{\pi} \cos \omega_{i \rho}(t)$
$i_{I F}{ }^{-}(t)=i_{L O}{ }^{-}(t) \times i_{R F}(t)=\left[\frac{1}{2}-\frac{2}{\pi} \cos \omega_{L O}(t)+\frac{2}{3 \pi} \cos 3 \omega_{L O}(t)-\frac{2}{5 \pi} \cos 5 \omega_{L O}(t)+\ldots\right] \cdot\left(I_{1}\right)$
$=\frac{I_{1}}{2}-\frac{2 I_{1}}{\pi} \cos \omega_{L \rho}(t)$
$i_{I F}(t)=i_{I F}{ }^{+}(t)-i_{I F}{ }^{-}(t)=\frac{4 I_{1}}{\pi} \cos \omega_{L O}(t)$
$v_{I F}(t)=i_{I F}(t) \times R_{p}=\frac{4}{\pi} I_{1} R_{p} \cdot \cos \omega_{L O}(t)$
where R_{p} is the parallel resistance, which models the inductor loss.
$R_{p}=Q \omega_{o} L_{p} \Rightarrow$ LO-IF feedthrough $=\frac{4}{\pi} I_{1} R_{p}=\frac{4}{\pi} I_{1} Q \omega_{L o} L_{p}$
b. The noise figure of a noiseless mixer is $3 \mathrm{~dB}(\mathrm{SSB})$, Razavi 6.1.2.
4.
a. See Razavi Example 8.14 and Figure 8.26. Here instead we have Q=5 @ $2.45 \mathrm{GHz}=>$ $Q^{*}(\mathrm{~L} 1+\mathrm{L} 2)^{*} \omega=154 \Omega .(\mathrm{L} 1=\mathrm{L} 2=1 \mathrm{nH}$ each! $)$
g_{m} for the transistors $>154 / 2=77 \Omega^{-1}$.
b. See Razavi, Example 8.23: $-98 \mathrm{dBc} / \mathrm{Hz}$.
5.
a. $H(s)=\frac{\phi_{\text {out }}}{\phi_{\text {in }}}(s)=\frac{K_{P D} K_{V C O}}{R_{1} C_{1} s^{2}+s+K_{P D} K_{V C O}}$
b. Type I.
c. For slow variations, $s \approx 0$ and then $\mathrm{H}(\mathrm{s})=1$. The output phase tracks the input.
6.
a.

Maximum drain efficiency [\%]	50	78.5	100	100	100
Peak drain voltage [*VDD]	2	2	1	2	3.6
Normalized power output capability [Pout/(max V and I)]	0.125	0.125	0.32	0.125	0.098
Power Amplifer Class	A	B	D	C	E

b. \square
A Doherty amplifier (Razavi section 12.9) consists of (at least) two amplifiers: a main amplifier (carrier PA) and an auxiliary amplifiers (peaking PA).

