The gain of the first stage is $\mathrm{A}_{1}=\mathrm{gm}_{1} \mathrm{R}_{1}$ and the gain of the second stage is $\mathrm{A}_{2}=$ $\mathrm{gm}_{2} \mathrm{R}_{2}$. There are two noise sources contributed by the transistors. Thus the total noise at the output is:

$$
4 k T R_{S} \Delta f \times A_{1}^{2} A_{2}^{2}+4 k T \gamma g_{m 1} \Delta f \times R_{1}^{2} \times A_{2}^{2}+4 k T \gamma g_{m 2} \Delta f \times R_{2}^{2}
$$

The total noise at the output due to the source is: $4 k T R_{S} \Delta f \times A_{1}^{2} A_{2}^{2}$
Based on these expressions the noise figure is:

$$
N F=\frac{4 k T R_{S} \Delta f \times A_{1}^{2} A_{2}^{2}+4 k T \gamma g_{m 1} \Delta f \times R_{1}^{2} \times A_{2}^{2}+4 k T \gamma g_{m 2} \Delta f \times R_{2}^{2}}{4 k T R_{S} \Delta f \times A_{1}^{2} A_{2}^{2}} \Rightarrow
$$

$$
N F=1+\frac{\gamma}{g_{m 1} R_{S}}+\frac{\gamma}{g_{m 1}^{2} g_{m 2} R_{S} R_{1}^{2}}
$$

2.

a. See Example 5.3 in Razavi. New value for $Q=2450 /(2550-2350)=12.25 \approx 12$.
b. On-chip L:s are usually much more lossy than on-chip C:s.
c. In the L, the Q value is mainly limited by the series resistance in the metallization and, at higher frequencies, the losses in the substrate.
3. Start by calculating R_{in} and A_{v} :

$R_{i n}=\frac{1}{g_{m 1}}$ and $A_{X}=g_{m 1} R_{1}$
Assume input matching, $R_{S}=\frac{1}{g_{m 1}}$ and $A_{V}=\frac{R_{1}}{2 R_{S}}$
Now we calculate the noise figure. The noise contributions are from M1, M2, R1, and Rs.
a. The output noise power of M1.

Similar to Problem 5.8 (or refer to the book on page 277)

$$
\left.\overline{V_{n, \text { out }}^{2}}\right|_{M 1}=\frac{4 k T \gamma}{g_{m 1}}\left(\frac{R_{1}}{R_{S}+\frac{1}{g_{m 1}}}\right)^{2}=k T \gamma \frac{R_{1}^{2}}{R_{S}}
$$

b. Calculate the output noise power from R1
$\left.\overline{V_{n, \text { out }}^{2}}\right|_{R_{1}}=4 k T R_{1}$
c. Calculate the output noise power from M2

First, we calculate the noise voltage gain from M2 to output.

$$
A_{M 2}=-\frac{g_{m 2} R_{1}}{2}
$$

Thus, the output noise power of M2:

$$
\left.\overline{V_{n, \text { out }}^{2}}\right|_{M 2}=\frac{4 k T \gamma}{g_{m 2}}\left(\frac{g_{m 2} R_{1}}{2}\right)^{2}=k T \gamma g_{m 2} R_{1}^{2}
$$

The noise of Rs is multiplied by the gain when referred to the output, and the result is divided by the gain when referred to the input. We thus have:

$$
\begin{aligned}
N F & =\frac{1}{4 k T R_{S}} \frac{\overline{V_{n, o u t}^{2}}}{A_{V}^{2}} \\
& =1+\frac{4 k T R_{1}}{4 k T R_{S}\left(\frac{R_{1}}{2 R_{S}}\right)^{2}}+\frac{k T \gamma \frac{R_{1}^{2}}{R_{S}}}{4 k T R_{S}\left(\frac{R_{1}}{2 R_{S}}\right)^{2}}+\frac{k T \gamma g_{m 2} R_{1}^{2}}{4 k T R_{S}\left(\frac{R_{1}}{2 R_{S}}\right)^{2}} \\
& =1+4 \frac{R_{S}}{R_{1}}+\gamma+\gamma g_{m 2} R_{S}
\end{aligned}
$$

4.

$\left(\phi_{\text {in }}(s)-\frac{\phi_{\text {out }}(s)}{M}\right) \cdot K_{P D} \cdot \frac{1}{s R C+1} \cdot \frac{K_{V C O}}{s}=\phi_{\text {out }}(s)$
$\phi_{\text {in }}(s)\left(K_{P D} \cdot \frac{1}{s R C+1} \cdot \frac{K_{V C O}}{s}\right)=\phi_{\text {out }}(s)\left(1+\frac{K_{P D} K_{V C O}}{s(s R C+1) M}\right)$
$\frac{\phi_{\text {out }}(s)}{\phi_{\text {in }}(s)}=\frac{\frac{K_{P D} K_{V C O}}{s(s R C+1)}}{1+\frac{K_{P D} K_{V C o}}{s(s R C+1) M}}=\frac{\frac{K_{P D} K_{V C O}}{s(s R C+1)}}{\frac{s(s R C+1) M+K_{P D} K_{V C O}}{s(s R C+1) M}}=\frac{K_{P D} K_{V C O} M}{s(s R C+1) M+K_{P D} K_{V C O}}=\frac{K_{P D} K_{V C O} M}{s^{2} R C M+s M+K_{P D} K_{V C o}}$
$\frac{\phi_{\text {out }}(s)}{\phi_{i n}(s)}=\frac{\frac{K_{P D} K_{V C O} M}{R C M}}{s^{2}+s \frac{M}{R C M}+\frac{K_{P D} K_{V C O}}{R C M}}=\frac{\frac{K_{P D} K_{V C O}}{R C}}{s^{2}+s \frac{1}{R C}+\frac{K_{P D} K_{V C O}}{R C M}}$
$s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2} \Rightarrow$
$\omega_{n}=\sqrt{\frac{K_{P D} K_{V C O}}{R C M}} \quad$ and
$2 \xi \omega_{n}=\frac{1}{R C} \Rightarrow \xi=\frac{1}{2 \omega_{n} R C}=\frac{1}{2 R C \sqrt{\frac{K_{P D} K_{V C O}}{R C M}}}=\frac{1}{2 \sqrt{\frac{K_{P D} K_{V C O} R C}{M}}}$
5.
(a)

$V_{\text {out }}(t)=I_{R F} R\left[S(t)-S\left(t-T_{L O} / 2\right)\right]$
If $V_{R F}=A_{R F} \cos \left(\omega_{R F} t\right)$, then by ignoring the higher order terms:
$V_{I F}=V_{\text {out }}=\frac{4}{\pi} g_{m 3} R A_{R F} \cos \left(\omega_{R F} t\right) \cos \left(\omega_{L O} t\right)=\frac{2}{\pi} g_{m 3} R A_{R F} \cos \left(\left(\omega_{R F}-\omega_{L O}\right) t\right)$
Therefore the conversion gain is:
$G_{C}=\frac{V_{I F}}{A_{R F}}=\frac{2}{\pi} g_{m 3} R$
(b) $\begin{aligned} & \overline{V_{n, \text { out }, M_{3}}^{2}}=4 k T \gamma g_{m} R^{2} \\ & \overline{V_{n, \text { out }, R_{S}}^{2}}=4 k T R_{S}\left(g_{m} R\right)^{2} \\ & \\ & V_{n, \text { out }, R}^{2}=2 \times 4 k T R\end{aligned}$

The noise figure can be written as:

$$
N F=\frac{\overline{V_{n, \text { out }, M_{3}}^{2}}+\overline{V_{n, \text { out }, R_{s}}^{2}}+\overline{V_{n, \text { out }, R}^{2}}}{G_{C}^{2} \overline{V_{n, \text { out }, R_{S}}^{2}}}=\frac{\pi^{2}}{4}\left(1+\frac{\gamma}{g_{m} R_{S}}+\frac{2}{g_{m}^{2} R_{S} R}\right)
$$

6.

See Example 12.6 in Razavi for the details.
6a: losses in the balun $=0.3 \mathrm{~mW}$
6 b : losses in the balun $=300 \mathrm{~mW}$
this is more unfavorable

