TSEK03 - Examination
Page 1 (5)
v2 2016-03-31
1.

Similar (but not identical) to Tutorial 6, problem 1, also similar (but again not identical) to Example 7.10 in Razavi's "Design of Analog CMOS Integrated Circuits", p. 226.
a.


Noise-source independent; can be added

$$
\begin{aligned}
& M_{1}: \overline{V_{n i, m_{1}}^{2}}=\frac{4 k t g}{g_{m_{1}}} \text { already at the input } \\
& H_{2}: \overline{V_{n_{1}, m_{2}}^{2}}=\frac{\overline{V_{n 0_{1} M_{2}}^{2}}}{\left(A_{0}\right)}=\frac{4 k T \gamma}{9 m_{2}} \cdot\left(\frac{g m_{2}}{g_{m_{1}}}\right)^{2}=\frac{4 / T_{\delta}}{\frac{s m_{2}}{}} \frac{\left(g m_{1}\right)^{2}}{} \\
& \overline{V_{n_{1}, \text { tot }}^{2}}=\overline{V_{n_{1}^{2} m_{1}}^{2}}+\overline{V_{n_{1, m_{2}}^{2}}^{2}}=\frac{4 k T_{\gamma}}{g_{m_{1}}}\left(1+\frac{g_{m_{2}}}{g_{m_{1}}}\right)
\end{aligned}
$$

* compared t. the tutorial and Razavi analog emos, $\lambda=0 \Rightarrow$ no $C L M \Rightarrow$ no $r_{01}$ \& rat

1 b . To minimize the (input-referred) noise, $\mathrm{g}_{\mathrm{m} 2}$ should be minimized. Since $\mathrm{g}_{\mathrm{m}}$ is proportional to the square root of $(W / L)$, the size of $\mathrm{M}_{2}$ should be small (small W for fixed L).
2.

Small-signal model:
(a) $i_{x}=g_{m} V_{x} \rightarrow R_{\text {in }}=\frac{V_{x}}{i_{x}}=\frac{1}{g_{m}}$
(b) Gain from the gate of the transistor to the output:

$$
\frac{V_{\text {out }}-V_{x}}{R_{F}}+g_{m} V_{x}=0 \rightarrow \frac{V_{\text {out }}}{V_{x}}=1-g_{m} R_{F}
$$

After matching: $g_{m}=1 / R_{S} \rightarrow A=\frac{V_{o u t}}{V_{i n}}=\frac{1 / g_{m}}{R_{S}+1 / g_{m}}\left(1-g_{m} R_{F}\right)=\frac{1}{2}\left(1-\frac{R_{F}}{R_{S}}\right)$
If $R_{F}=10 R_{s}$, then

$$
A=-9 / 2 \text { or }-4.5
$$

(c) The noise of $R_{S}$ is multiplied by the gain square to appear at the output. Thus:

$$
\overline{V_{n, o u t, R_{S}}^{2}}=4 k T R_{S} \cdot \frac{1}{4}\left(1-\frac{R_{F}}{R_{S}}\right)^{2}
$$

If $R_{F} \gg R_{S}$ :

$$
\overline{V_{n, o u t, R_{S}}^{2}} \approx 4 k T R_{S} \cdot \frac{1}{4}\left(-\frac{R_{F}}{R_{S}}\right)^{2}=k T \frac{R_{F}^{2}}{R_{S}}
$$

3. 

(a) Ignoring higher frequency terms:

$$
i_{L O}(t)=\frac{1}{2}+\frac{2}{\pi} \cos \omega_{L O}(t)-\frac{2}{3 \pi} \cos 3 \omega_{L O}(t)+\ldots \text { and } i_{R F}(t)=I_{R F} \cos \omega_{R F}(t)+I_{B I A S}
$$

Therefore in case of switching the output voltage at IF is given by:

$$
\begin{aligned}
& i_{I F}(t)=\left[I_{R F} \cos \omega_{R F}(t)+I_{B I A S}\right] \times\left[\frac{1}{2}+\frac{2}{\pi} \cos \omega_{L O}(t)\right] \\
& i_{I F}(t)=\frac{I_{R F}}{2} \cos \omega_{R F}(t)+\frac{I_{B I A S}}{2}+\frac{2 I_{B I A S}}{\pi} \cos \omega_{L O}(t)+\frac{I_{R F}}{\pi} \cos \left(\omega_{L O}-\omega_{R F}\right) t
\end{aligned}
$$

Applying $V_{I F}(t)=-g_{m} R V_{R F}$, The conversion gain is given by:

$$
G_{C}=\left|\frac{V_{I F}(t)}{V_{R F}(t)}\right|=\left|\frac{R \times i_{I F}(t)}{\frac{i_{R F}(t)}{g_{m}}}\right|=\frac{\frac{1}{\pi} g_{m} R I_{R F}}{I_{R F}}=\frac{1}{\pi} g_{m} R
$$

(b) $\quad \bar{V}_{\text {nout }, M 3}^{2}=\bar{I}_{n, M 3}^{2} R^{2}=4 K T \gamma g_{d \sigma} R^{2} \Delta f$

> similar to $g m$ for our transistors, since long channel devices

$$
\begin{aligned}
& \bar{V}_{\text {nout }, R_{S}}^{2}=\bar{V}_{n, R_{S}}^{2} A_{V}^{2}=4 K T R_{S}\left(g_{m} R\right)^{2} \Delta f \\
& \bar{V}_{\text {nout }, R}^{2}=4 K T R \Delta f
\end{aligned}
$$

The noise factor is given by:

$$
F=\frac{\bar{V}_{\text {nout }, M 3}^{2}+\bar{V}_{\text {nout }, R_{S}}^{2}+\bar{V}_{\text {nout }, R}^{2}}{\left(G_{C}\right)^{2} \bar{V}_{n, R_{S}}^{2}}=\pi^{2}\left(1+\frac{\gamma}{g_{m}^{2} R_{S}}+\frac{1}{g_{m}^{2} R R_{S}}\right)
$$

The $\mathrm{M}_{3}$ in this solution is called $\mathrm{M}_{2}$ for our problem
4.
a. See Example 8.14 and Figure 8.26 in the book. Here instead we have Q=8 @ 2.45 GHz $=>Q^{*}(L 1+L 2)^{\star} \omega=246 \Omega$.
$g_{m}$ for the transistors $>246 / 2=123 \Omega^{-1}$.
b. See the book, pp. 511-512.
5.

Similar to Fig 9.30 in the course book and eq. 9.17-9.19.
The solution can also be written as:
Open loop transfer functions of the system is:

$$
\begin{gathered}
H_{o}(s)=K_{P F D} Z_{L P F}(s) \frac{K_{V C O}}{s}=\frac{I_{o}}{2 \pi}\left(\frac{1}{s C_{p}}+R\right) \frac{K_{V C O}}{s} \\
H_{o}(s)=\frac{I_{0} K_{V C O}}{2 \pi C_{p}} \frac{1+s R C_{p}}{s^{2}}=k \frac{1+s R C_{p}}{s^{2}}, \text { where } k=\frac{I_{0} K_{V C O}}{2 \pi C_{p}}
\end{gathered}
$$

The close-loop transfer function is then:

$$
H(s)=\frac{H_{0}(s)}{1+H_{0}(s)}=k \frac{1+s R C_{p}}{s^{2}+s R C_{p} k+k}
$$

6. 

a. BCEDA
b. The "conduction angle" described how large portion of the total cycle an amplifier is conducting, see book, p. 780.

