EXAMINATION IN

TSEK03/TEN1

RADIO FREQUENCY INTEGRATED CIRCUITS

Date:	2013-06-05
Time:	14-18
Location:	TER3
Aids:	Calculator, Dictionary
Teachers:	Behzad Mesgarzadeh (5719)
	Amin Ojani (2716)

- 12 points are required to pass.
- 12-16:3

- 16-20:4
- 20-24:5

Please start each new problem at the top of a page! Only use one side of each paper!

(5 p)

1) Figure 1 shows an amplifier schematic. Determine the input-referred 1/f noise voltage. Ignore all the thermal noise sources. Assume $g_m \gg 1/r_o$, $\gamma = 0$, and $\lambda \neq 0$.

Fig. 1. An amplifier schematic.

2) Consider the wideband common-gate low noise amplifier (LNA) shown in Fig. 2. R_S is the input source resistance. Assume that the transistors are long-channel devices with $\lambda_n = 0$. Also assume that $\gamma_{body effect} = 0$.

Fig. 2. A common-gate LNA.

- (a) Calculate the input impedance of the LNA. Assume that we can neglect all parasitics associated with the transistors. (2 p)
- (b) Derive an expression for the noise figure of the LNA. Only consider the thermal noise sources and ignore the gate noise of the transistors. Also assume that R_L is a noiseless resistor. (3 p)

Hint: $\overline{i_{n,M}^2} = 4KT\gamma g_m$

3) The circuit shown in Fig. 3 is a dual-gate mixer used in traditional microwave design. Assume abrupt edges and a 50% duty cycle for the LO, and neglect channel-length modulation and body effect.

Fig. 3. A dual-gate mixer.

- (a) Assume that M_1 is an ideal switch. Determine all the frequency components which appear at the mixer IF port. (2 p)
- (b) Assume when M_1 is on, it has an on-resistance of R_{on1} . Compute the voltage conversion gain of the circuit. Assume M_2 does not enter the triode region and denote its transconductance by g_{m2} . (1 p)
- (c) Assume that M_1 is an ideal switch (noise contribution is zero). Derive the expression for the noise figure of the mixer. (2 p)

Hints:

i)
$$i_{LO}(t) = \frac{1}{2} + \frac{2}{\pi} \cos \omega_{LO}(t) - \frac{2}{3\pi} \cos 3\omega_{LO}(t) + \frac{2}{5\pi} \cos 5\omega_{LO}(t) - ...$$

ii) $i_{RF}(t) = I_{bias} + I_{RF} \cos \omega_{RF}(t)$
iii) $\overline{i_{n,M}^2} = 4KT\gamma g_m$

- 4) A negative-resistance oscillator operating at 2.4 GHz frequency is shown in Fig. 4. The resonant circuit is implemented using inductor L = 5 nH with Q = 10 and a variable capacitor C. Assume that we can neglect all parasitics associated with the transistors.
- (a) What is the minimum width of two identical transistors M_1 and M_2 to ensure the oscillation? (2 p)
- (b) How much should the variable capacitance C be varied to enable tuning from 2.4 GHz to 2.5 GHz? (1 p)
- (c) For a capacitance corresponding to 2.4 GHz oscillation frequency, if an additional inductor of 5 nH is connected in parallel with the capacitor *C*, how much will the oscillation frequency change (in percentage)? (2 p)

Fig. 4. A negative-resistance oscillator.

5) Figure 5 shows a block level description of a PLL.

(a) Determine the closed-loop transfer function (i.e., $\frac{\Phi_{out}}{\Phi_{in}}(s)$) and the type of the PLL. (2 p)

(b) Prove that for slow input phase variations the output tracks the input. (2 p)

Fig. 5. Block level description of a PLL.

Page 6(6)

TRANSISTOR EQUATIONS

NMOS

 $I_{\rm D} = 0 \qquad (V_{\rm GS} < V_{\rm TN})$ $\frac{V_{\rm DS}^2}{2} \qquad (V_{\rm GS} > V_{\rm TN})$ **Cutoff:** •

Linear mode:

$$I_D = \mu_n C_{ox} \frac{W}{L} \left((V_{GS} - V_{TN}) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

$$V_{GS} > V_{TN}$$
) and $(V_{DS} < V_{GS} - V_{TN})$

Saturation mode: •

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TN})^{2} (1 + \lambda V_{DS}) \qquad (V_{GS} > V_{TN}) \text{ and } (V_{DS} > V_{GS} - V_{TN})$$

• **On-resistance in triode region:** $R_{on} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TN})}$

PMOS

- $I_D = 0 \qquad (V_{GS} < |V_{TP}|)$ **Cutoff:** •
- Linear mode: ٠

$$I_{D} = \mu_{p} C_{ox} \frac{W}{L} \left(\left(V_{SG} - |V_{TP}| \right) V_{SD} - \frac{V_{SD}^{2}}{2} \right) \qquad (V_{GS} > |V_{TP}|) \text{ and } (V_{SD} < V_{SG} - |V_{TP}|)$$

Saturation mode: ٠

$$I_{D} = \frac{1}{2} \mu_{p} C_{ox} \frac{W}{L} (V_{SG} - |V_{TP}|)^{2} (1 + \lambda V_{SD}) \qquad (V_{GS} > |V_{TP}|) \text{ and } (V_{SD} > V_{SG} - |V_{TP}|)$$

• On-resistance in triode region:
$$R_{on} = \frac{1}{\mu_p C_{ox} \frac{W}{L} (V_{SG} - |V_{TP}|)}$$