ANSWERS

TSEK03

Radio Frequency Integrated Circuits

Date: 2013-03-14
Time:
14-18
Location: TER1
Aids: Calculator, Dictionary
Teachers: Behzad Mesgarzadeh (5719)
Amin Ojani (2716)

12 points are required to pass.
12-16: 3
16-20 : 4
20-24 : 5
Please start each new problem at the top of a page! Only use one side of each paper!

1)

There are two thermal noise sources as shown below.

Since:
$\overline{I_{n, R}^{2}}=4 k T / R$
$\overline{I_{n, M 1}^{2}}=4 k T \gamma g_{m}$
The output noise in both circuits should be the same. Then:
$\overline{V_{n, \text { out }}^{2}}=\left(4 k T \gamma g_{m}+4 k T / R\right) \cdot R^{2}=\overline{V_{n, \text { in }}^{2}}\left(g_{m} R\right)^{2}$
Then we can determine the input referred noise as:
$\overline{V_{n, i n}^{2}}=\frac{4 k T}{g_{m}^{2}}\left(\gamma g_{m}+1 / R\right)$
2)

Small-signal model:

(a) $i_{x}=g_{m} V_{x} \rightarrow R_{\text {in }}=\frac{V_{x}}{i_{x}}=\frac{1}{g_{m}}$
(b) Gain from the gate of the transistor to the output:
$\frac{V_{\text {out }}-V_{x}}{R_{F}}+g_{m} V_{x}=0 \rightarrow \frac{V_{\text {out }}}{V_{x}}=1-g_{m} R_{F}$

After matching: $g_{m}=1 / R_{S} \rightarrow A=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1 / g_{m}}{R_{S}+1 / g_{m}}\left(1-g_{m} R_{F}\right)=\frac{1}{2}\left(1-\frac{R_{F}}{R_{S}}\right)$
If $R_{F}=25 R_{S}$, then: $A=-12$
(c) The noise of R_{S} is multiplied by the gain square to appear at the output. Thus:

$$
\overline{V_{n, o u t, R_{S}}^{2}}=4 k T R_{S} \cdot \frac{1}{4}\left(1-\frac{R_{F}}{R_{S}}\right)^{2}
$$

If $R_{F} \gg R_{S}$:
$\overline{V_{n, \text { out }, R_{S}}^{2}} \approx 4 k T R_{S} \cdot \frac{1}{4}\left(-\frac{R_{F}}{R_{S}}\right)^{2}=k T \frac{R_{F}^{2}}{R_{S}}$
3)
(a)

$V_{\text {out }}(t)=I_{R F} R\left[S(t)-S\left(t-T_{L O} / 2\right)\right]$
If $V_{R F}=A_{R F} \cos \left(\omega_{R F} t\right)$, then by ignoring the higher order terms:
$V_{I F}=V_{\text {out }}=\frac{4}{\pi} g_{m 3} R A_{R F} \cos \left(\omega_{R F} t\right) \cos \left(\omega_{L O} t\right)=\frac{2}{\pi} g_{m 3} R A_{R F} \cos \left(\left(\omega_{R F}-\omega_{L O}\right) t\right)$
Therefore the conversion gain is:
$G_{C}=\frac{V_{I F}}{A_{R F}}=\frac{2}{\pi} g_{m 3} R$
(b) $\overline{\overline{V_{n, o u t, M_{3}}^{2}}}=4 k T \gamma g_{m} R^{2}$
$\overline{V_{n, \text { out }, R_{S}}^{2}}=4 k T R_{S}\left(g_{m} R\right)^{2}$
$\overline{V_{n, \text { out }, R}^{2}}=2 \times 4 k T R$

The noise figure can be written as:
$N F=\frac{\overline{V_{n, \text { out }, M_{3}}^{2}}+\overline{V_{n, \text { out }, R_{s}}^{2}}+\overline{V_{n, o u t, R}^{2}}}{G_{C}^{2} \overline{V_{n, \text { out }, R_{S}}^{2}}}=\frac{\pi^{2}}{4}\left(1+\frac{\gamma}{g_{m} R_{S}}+\frac{2}{g_{m}^{2} R_{S} R}\right)$
4)
(a) $\frac{Y}{X}(s)=\frac{k^{2}}{k^{2}+s^{2}}$
(b) The open-loop transfer function is k^{2} / s^{2}. Two poles at origin gives a -180° constant phase shift and a magnitude with $-40 \mathrm{~dB} / \mathrm{dec}$ slope.

(c) Differential equation: $\frac{d^{2} y}{d t^{2}}+k^{2} y=k x$.

For $x=0, y=A \cos \left(\omega_{1} t+\phi\right)$ is the solution of the abovementioned equation. If we replace it in the differential equation we get:
$-A \omega_{1}^{2} \cos \left(\omega_{1} t+\phi\right)+k^{2} A \cos \left(\omega_{1} t+\phi\right)=0 \rightarrow \omega_{1}=k$ (oscillation frequency)
5)
(a) Refer to the course book Chapter 9 .
(b) Refer to the course book Chapter 9 .

