ANSWERS

TSEK03

Radio Frequency Integrated Circuits

Date: 2012-05-24
Time: 14-18
Location: Kåra
Aids: Calculator, Dictionary
Teachers: Behzad Mesgarzadeh (5719)
Amin Ojani (2815)
12 points are required to pass.12-16:316-20 : 4

$$
20-24: 5
$$

Please start each new problem at the top of a page! Only use one side of each paper!

1)

The gain of the first stage is $A_{1}=-g_{m 1} R_{1}$ and the gain of the second stage is $A_{2}=-g_{m 2} R_{2}$. There are two noise sources contributed by the transistors and two noise sources contributed by R_{1} and R_{2}. Thus the total noise at the output is:
$N_{o}=4 k T R_{S} \Delta f \cdot A_{1}^{2} A_{2}^{2}+4 k T \gamma g_{m 1} \Delta f \cdot R_{1}^{2} \cdot A_{2}^{2}+4 k T \gamma g_{m 2} \Delta f \cdot R_{2}^{2}+4 k T R_{1} \Delta f \cdot A_{2}^{2}+$ $4 k T R_{2} \Delta f$

The total noise at the output due to the source is: $4 k T R_{S} \Delta f \times A_{1}^{2} A_{2}^{2}$
Based on these expressions the noise figure is:
$N F=\frac{N_{o}}{4 k T R_{S} \Delta f \times A_{1}^{2} A_{2}^{2}} \Rightarrow$
$N F=1+\frac{\gamma}{g_{m 1} R_{S}}+\frac{\gamma}{g_{m 1}^{2} g_{m 2} R_{S} R_{1}^{2}}+\frac{1}{g_{m 1}^{2} R_{S} R_{1}}+\frac{1}{g_{m 1}^{2} g_{m 2}^{2} R_{S} R_{1}^{2} R_{2}}$
2)
(a) We draw the SSM and then apply a test voltage $\left(\mathrm{V}_{\mathrm{x}}\right)$ to determine the input impedance.

The following KCL equations can be written:
$i_{x}-\left(V_{x}-V_{\text {out }}\right) / R_{F}-V_{x} / R_{1}=0$
$g_{m 1} V_{x}+\left(V_{\text {out }}-V_{x}\right) / R_{F}+V_{\text {out }} / R_{L}=0$
From (2):
$V_{o u t}=\frac{V_{x}\left(1 / R_{F}-g_{m 1}\right)}{1 / R_{F}+1 / R_{L}}$

Replacing (3) into (1) results in:
$i_{x}-\left(-\frac{1 / R_{F}-g_{m 1}}{1+R_{F} / R_{L}}+\frac{1}{R_{1}}+\frac{1}{R_{F}}\right) V_{x}=0$

Thus:
$R_{i n}=\frac{V_{x}}{i_{x}}=\frac{1}{\frac{g_{m 1}-1 / R_{F}}{1+R_{F} / R_{L}}+\frac{1}{R_{1}}+\frac{1}{R_{F}}}$
(b) Considering the drain noise of M1, we can draw the SSM as following:

Let's denote $R=\left(R_{1} \| R_{S}\right)$. We write:
$V_{1}=V_{\text {out }} \frac{R}{R_{F}+R}$
and
$V_{\text {out }}=-\left(R_{L} \|\left(R_{F^{\prime}}+R\right)\right)\left(i_{n}+g_{m 1} V_{1}\right)$

Replacing (1) into (2):
$\overline{V_{\text {out }}^{2}}=\frac{\left(R_{L} \|\left(R_{F}+R\right)\right)^{2}}{\left[1+\frac{g_{m 1} R}{R_{F}+R} \cdot\left(R_{L} \|\left(R_{F}+R\right)\right)\right]^{2}} \cdot \overline{i_{n}^{2}}$
After some simplifications, replacing the expression for $\overline{\overline{i_{n}^{2}}}$ gives:
$\overline{V_{o u t}^{2}}=\frac{4 k T \gamma g_{m} R_{L}^{2}\left(R_{F}+R\right)^{2} \Delta f}{\left(R_{F}+R+R_{L}+g_{m 1} R R_{L}\right)^{2}}$
3) Proof has been provided in the lecture notes.
4)
(a)
$V_{\text {out }}=\frac{I_{\text {in }}}{Y_{\text {tank }}} \Rightarrow \frac{V_{\text {out }}}{I_{\text {in }}}=\frac{1}{Y_{\text {tank }}}=\frac{1}{1 / j L \omega+j \omega C+1 / R}=\frac{j R L \omega}{j \omega L+R\left(1-L C \omega^{2}\right)}$
To determine the oscillation frequency, we should put the imaginary part of the transfer function equal to zero resulting in $\omega_{o s c}=1 / \sqrt{L C}$.
(b)
$\left.Q=\frac{\omega_{0}}{2} \frac{d \Phi}{d \omega} \right\rvert\, \omega=\omega_{0}$
$\Phi=90-\tan ^{-1}\left(\frac{\omega L}{R\left(1-L C \omega^{2}\right)}\right) \Rightarrow \frac{d \Phi}{d \omega}=\frac{R L+R L^{2} C \omega^{2}}{\omega^{2} L^{2}+R^{2}\left(1-L C \omega^{2}\right)^{2}}$

At oscillation frequency:
$\omega=\omega_{0}=1 / \sqrt{L C} \Rightarrow \frac{d \Phi}{d \omega}=2 R C$
$Q=\left.\frac{\omega_{0}}{2} \frac{d \Phi}{d \omega}\right|_{\omega=\omega_{0}} \Rightarrow Q=\frac{1}{2 \sqrt{L C}} \cdot 2 R C=R \sqrt{\frac{C}{L}}$
5)
(a)
$\frac{\phi_{\text {out }}(s)}{\phi_{\text {in }}(s)}=\frac{K_{O} K_{D}}{s+K_{O} K_{D}}$
Closed-loop bandwidth:
$\omega_{h}=K_{O} K_{D}$
(b)

The unit step response is:
$\phi_{\text {out }}(s)=(1 / s) \cdot \frac{K_{O} K_{D}}{s+K_{O} K_{D}}=\frac{1}{s}-\frac{1}{s+K_{O} K_{D}} \Rightarrow \phi_{\text {out }}(t)=\left(1-e^{-t K_{O} K_{D}}\right) t>0$
The final value of $\phi_{\text {out }}(t)$ is 1 . Putting the equation above to 0.95 gives:
$t=-\frac{\ln 0.05}{K_{O} K_{D}} \approx \frac{3}{K_{O} K_{D}}$

