
TSEK03 Integrated Radio Frequency Circuits 2018  1/7 

 

Tutorial 4: Oscillator Solutions 

Problem 1 

Suppose 𝐻(𝑠) in the negative feedback system shown below satisfies the following conditions at 

a frequency of 𝜔1: |𝐻(𝑠)| = 1, and ∠𝐻(𝑠) = 170°. 

 

Fig. 1.1. Negative feedback system 

Explain what happens to the phase and the amplitude of the output signal. 

Solution: 

The transfer function of the negative feedback system is expressed as 

𝑌(𝑠)

𝑋(𝑠)
=

𝐻(𝑠)

1 + 𝐻(𝑠)
                                                                 (1.1) 

where the function 𝐻(𝑠) can be decomposed through the Euler’s identity as 

𝐻(𝑠) = 1 ∙ 𝑒𝑗170° = cos 170° + 𝑗 sin 170°                                         (1.2) 

Elaborating more for (1.1), we have 

𝑌(𝑠)

𝑋(𝑠)
=

𝐻(𝑠)[(1 + 𝐻(𝑠)]∗

[(1 + 𝐻(𝑠)][(1 + 𝐻(𝑠)]∗
 

⇒
𝑌(𝑠)

𝑋(𝑠)
=

𝐻(𝑠) + |𝐻(𝑠)|2

1 + 𝐻(𝑠) + 𝐻(𝑠)∗ + |𝐻(𝑠)|2
                                        (1.3) 

Substituting for |𝐻(𝑠)| and ∠𝐻(𝑠) in (1.3), we have 

𝑌(𝑠)

𝑋(𝑠)
=

(1 + cos170°) + 𝑗 sin 170°

2(1 + cos170°)
≈ 0.5 + 𝑗5.76                                      

⇒
𝑌(𝑠)

𝑋(𝑠)
≈ 5.78∠85.04°  ∎                                                            (1.4) 

So, if 𝑥(𝑡) is a sinusoid signal at 𝜔1, then the amplitude of the output signal 𝑦(𝑡) will be 

multiplied by 5.78 and the phase changed by 85.04 degrees approximately. 
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Problem 2 

Prove that the series combination of the two tanks in Fig. 2.1(a) can be replaced by one tank as 

shown in Fig. 2.1(b). 

 

Fig. 2.1. (a) Cross-coupled oscillator. (b) with tanks merged 

Solution: 

The impedance observed from the nodes X and Y is equal to  

𝑍𝑒𝑞 = 2(𝑍𝐿1||𝑍𝐶1||𝑅𝑃)                                                            (2.1) 

Generally speaking, if we have two impedances 𝑍𝐴 and 𝑍𝐵, then the resultant parallel impedance 

from 𝑍𝐴 and 𝑍𝐵 multiplied by a factor 𝑁 is equal to multiply each individual impedance by the 

same factor 𝑁 and then calculate for the resultant parallel impedance. This can be expressed as 

𝑁 ∙ (𝑍𝐴 ||  𝑍𝐵)  ≜  𝑁 ∙ 𝑍𝐴 ||  𝑁 ∙ 𝑍𝐵                                                  (2.2) 

Demonstration: 

𝑁 ∙ (𝑍𝐴 ||  𝑍𝐵) =
𝑁𝑍𝐴𝑍𝐵

𝑍𝐴 + 𝑍𝐵
 

𝑁 ∙ (𝑍𝐴 || 𝑍𝐵) =
𝑁2𝑍𝐴𝑍𝐵

𝑁𝑍𝐴 + 𝑁𝑍𝐵
=

(𝑁𝑍𝐴)(𝑁𝑍𝐵)

𝑁𝑍𝐴 + 𝑁𝑍𝐵
 

⇒ 𝑁 ∙ (𝑍𝐴 || 𝑍𝐵) = 𝑁 ∙ 𝑍𝐴 ||  𝑁 ∙ 𝑍𝐵 

This result can be applied for more than two impedances. Then, (2.1) can also be expressed as  

𝑍𝑒𝑞 = 2𝑍𝐿1 || 2𝑍𝐶1 ||2𝑅𝑃                                                                  

⇒ 𝑍𝑒𝑞 = 2𝑠𝐿 ||  2 𝑠𝐶⁄  || 2𝑅𝑃  ∎                                                 (2.3) 

Notice that (2.3) coincide with the impedances connected in parallel in Fig. 2.1(b). 
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Problem 3 

A negative resistance LC oscillator is shown in Fig. 3.1. The component values are L=5 nH, C = 

2.5 pF, Inductor Q = 5 and 𝜇𝑛𝐶𝑜𝑥 = 110 μA/V2. 

 

Fig. 3.1. Negative resistance LC oscillator 

a) Calculate the frequency of oscillation, without and with losses in the inductor.  

b) Calculate the value of negative resistance provided by the cross-coupled NMOS transistor 

pair to support oscillation.  

c) What is the W/L ratio of 𝑀1 and 𝑀2 to achieve the required negative resistance. 

d) To cover 40 MHz frequency band, the RFIC-designer would like to use a varactor, 

replacing the C in the schematic with a Cvar, a varactor with a tuning range from Cmin to 

Cmax. Calculate the tuning range of the capacitor (%). Is the required tuning range possible 

to achieve with a conventional CMOS varactor? 

Solution: 

a) The model of the resonant circuit is shown in Fig. 3.2. 

 

Fig. 3.2. Resonant circuit RLC 

Without losses in the circuit 𝑅𝑠 = 0. The resonance frequency in the system is equal to: 

𝑓0 =
1

2𝜋√𝐿𝑆𝐶
=   

1

2𝜋√2(5𝑛𝐻)(2.5𝑝𝐹)
≈ 1.007 𝐺𝐻𝑧                    (3.1) 
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With losses in the circuit 𝑅𝑠 ≠ 0. To simplify the analysis in the circuit, we transform the RL 

network in series into a parallel network as shown in Fig. 3.3. 

 

Fig. 3.3. Transformation from series to parallel RL network 

In this case the, the resonant frequency can be calculated as follows 

𝑓0 =
1

2𝜋√𝐿𝑃𝐶
                                                                     (3.2) 

where the inductance 𝐿𝑝 is expressed as 

𝐿𝑝 = 𝐿𝑠 (1 +
1

𝑄2
)                                                             (3.3) 

Details of the 𝐿𝑃 derivation can be found in chapter 3 of Thomas H. Lee book: “The design of 

CMOS Radio Frequency Integrated Circuits”, 2nd edition. Substituting (3.3) into (3.2) and then 

evaluating for the resonant frequency, we have 

 

𝑓0 =
𝑄

2𝜋√𝐿𝑠𝐶(𝑄2 + 1)
=  

5

2𝜋√2(5𝑛𝐻)(2.5𝑝𝐹)(52 + 1)
≈  0.987 𝐺𝐻𝑧      (3.4) 

 

b) The parallel resistance 𝑅𝑝 can be expressed as  

𝑅𝑝 = 𝑄𝜔0𝐿𝑝                                                                   (3.5) 

The negative resistance 𝑅𝑛𝑒𝑔 is equal to −𝑅𝑝. So, substituting (3.3) into (3.5) and solving for −𝑅𝑝, 

we have 

𝑅𝑛𝑒𝑔 = −(5)(2𝜋 ∙ 0.987 𝐺𝐻𝑧)(10 nH) (1 +
1

52
) ≈ −322.4 𝛺                   (3.6) 

c) 𝑅𝑛𝑒𝑔 seen by the RLC network can be found through the circuit shown in Fig. 3.4. 

The current 𝑖𝑖𝑛 can be expressed as  

𝑖𝑖𝑛 = 𝑔𝑚1𝑉𝑔𝑠1                                                              (3.7) 

−𝑖𝑖𝑛 = 𝑔𝑚2𝑉𝑔𝑠2                                                              (3.8) 
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Fig. 3.4. Negative resistance seen by the RLC network 

On the other hand, the voltage 𝑉𝑖𝑛 can be expressed as 

𝑉𝑖𝑛 = 𝑉𝑔𝑠2 −  𝑉𝑔𝑠1 = −𝑖𝑖𝑛 (
1

𝑔𝑚2
+

1

𝑔𝑚1
)                                   (3.9) 

Assuming that 𝑔𝑚1 and 𝑔𝑚2 are both identical, then 𝑅𝑛𝑒𝑔 seen by the RLC network equals to 

𝑅𝑛𝑒𝑔 =
𝑉𝑖𝑛

𝑖𝑖𝑛
= − (

1

𝑔𝑚2
+

1

𝑔𝑚1
) = −

2

𝑔𝑚
                                     (3.10) 

Since the transconductance 𝑔𝑚 is also expressed as √2𝜇𝑛𝐶𝑜𝑥𝐼𝐷(𝑊/𝐿), where 𝜇𝑛𝐶𝑜𝑥 = 110 μA/V2 

and 𝐼𝐷 = 1 mA, −𝑅𝑝 is 

−𝑅𝑝 = −
2

√2𝜇𝑛𝐶𝑜𝑥𝐼𝐷(𝑊/𝐿)
                                                (3.11) 

Solving for the ratio 𝑊/𝐿, we have 

𝑊

𝐿
=

2

𝜇𝑛𝐶𝑜𝑥𝐼𝐷𝑅𝑝
2

≈ 175                                                 (3.12) 

d) The tuning range of the capacitor, T = 𝐶𝑚𝑎𝑥 - 𝐶𝑚𝑖𝑛, can be expressed in terms of the frequency 

band through the equation 8.53 in Razavi’s book as 

∆𝜔𝑜𝑠𝑐 ≈
1

√𝐿1𝐶1

𝐶𝑣𝑎𝑟2 − 𝐶𝑣𝑎𝑟1

2𝐶1
=

1

√𝐿1𝐶1

𝑇

2𝐶1
                                (3.13) 

Therefore, solving for 𝑇 in (3.13), we have 

𝑇 = ∆𝜔𝑜𝑠𝑐√𝐿1𝐶12𝐶1                                                                 

⇒ 𝑇 = 2𝜋(40 MHz)√(10 nH)(2.5 pF)(5.0 pF) ≈ 0.2 pF                            (3.14) 
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Problem 4 

A single-transistor inductor-feedback oscillator is shown in Fig. 4.1. 

 

Fig. 4.1. Single-transistor inductor-feedback oscillator 

Find an expression for the frequency of oscillation and the value of 𝑔𝑚𝑅𝐿 necessary for oscillation. 

Assume that output resistance of the transistor is negligible. 

Solution: 

Write the node equations at the input and output. 

      

and 
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