## Tutorial 4: Oscillator Solutions

## Problem 1

Suppose $H(s)$ in the negative feedback system shown below satisfies the following conditions at a frequency of $\omega_{1}:|H(s)|=1$, and $\angle H(s)=170^{\circ}$.


Fig. 1.1. Negative feedback system
Explain what happens to the phase and the amplitude of the output signal.

## Solution:

The transfer function of the negative feedback system is expressed as

$$
\begin{equation*}
\frac{Y(s)}{X(s)}=\frac{H(s)}{1+H(s)} \tag{1.1}
\end{equation*}
$$

where the function $H(s)$ can be decomposed through the Euler's identity as

$$
\begin{equation*}
H(s)=1 \cdot e^{j 170^{\circ}}=\cos 170^{\circ}+j \sin 170^{\circ} \tag{1.2}
\end{equation*}
$$

Elaborating more for (1.1), we have

$$
\begin{align*}
& \frac{Y(s)}{X(s)}=\frac{H(s)\left[(1+H(s)]^{*}\right.}{\left[( 1 + H ( s ) ] \left[(1+H(s)]^{*}\right.\right.} \\
\Rightarrow & \frac{Y(s)}{X(s)}=\frac{H(s)+|H(s)|^{2}}{1+H(s)+H(s)^{*}+|H(s)|^{2}} \tag{1.3}
\end{align*}
$$

Substituting for $|H(s)|$ and $\angle H(s)$ in (1.3), we have

$$
\begin{align*}
\frac{Y(s)}{X(s)} & =\frac{\left(1+\cos 170^{\circ}\right)+j \sin 170^{\circ}}{2\left(1+\cos 170^{\circ}\right)} \approx 0.5+j 5.76 \\
& \Rightarrow \frac{Y(s)}{X(s)} \approx 5.78 \angle 85.04^{\circ} \tag{1.4}
\end{align*}
$$

So, if $x(t)$ is a sinusoid signal at $\omega_{1}$, then the amplitude of the output signal $y(t)$ will be multiplied by 5.78 and the phase changed by 85.04 degrees approximately.

## Problem 2

Prove that the series combination of the two tanks in Fig. 2.1(a) can be replaced by one tank as shown in Fig. 2.1(b).


Fig. 2.1. (a) Cross-coupled oscillator. (b) with tanks merged

## Solution:

The impedance observed from the nodes X and Y is equal to

$$
\begin{equation*}
Z_{e q}=2\left(Z_{L 1}| | Z_{C 1}| | R_{P}\right) \tag{2.1}
\end{equation*}
$$

Generally speaking, if we have two impedances $Z_{A}$ and $Z_{B}$, then the resultant parallel impedance from $Z_{A}$ and $Z_{B}$ multiplied by a factor $N$ is equal to multiply each individual impedance by the same factor $N$ and then calculate for the resultant parallel impedance. This can be expressed as

$$
\begin{equation*}
N \cdot\left(Z_{A} \| Z_{B}\right) \triangleq N \cdot Z_{A} \| N \cdot Z_{B} \tag{2.2}
\end{equation*}
$$

Demonstration:

$$
\begin{gathered}
N \cdot\left(Z_{A} \| Z_{B}\right)=\frac{N Z_{A} Z_{B}}{Z_{A}+Z_{B}} \\
N \cdot\left(Z_{A} \| Z_{B}\right)=\frac{N^{2} Z_{A} Z_{B}}{N Z_{A}+N Z_{B}}=\frac{\left(N Z_{A}\right)\left(N Z_{B}\right)}{N Z_{A}+N Z_{B}} \\
\Rightarrow N \cdot\left(Z_{A} \| Z_{B}\right)=N \cdot Z_{A} \| N \cdot Z_{B}
\end{gathered}
$$

This result can be applied for more than two impedances. Then, (2.1) can also be expressed as

$$
\begin{align*}
Z_{e q} & =2 Z_{L 1}\left\|2 Z_{C 1}\right\| 2 R_{P} \\
\Rightarrow Z_{e q} & =2 s L\left\|2 /_{s C}\right\| 2 R_{P} \tag{2.3}
\end{align*}
$$

Notice that (2.3) coincide with the impedances connected in parallel in Fig. 2.1(b).

## Problem 3

A negative resistance LC oscillator is shown in Fig. 3.1. The component values are $\mathrm{L}=5 \mathrm{nH}, \mathrm{C}=$ 2.5 pF , Inductor $\mathrm{Q}=5$ and $\mu_{n} C_{o x}=110 \mu \mathrm{~A} / \mathrm{V}^{2}$.


Fig. 3.1. Negative resistance LC oscillator
a) Calculate the frequency of oscillation, without and with losses in the inductor.
b) Calculate the value of negative resistance provided by the cross-coupled NMOS transistor pair to support oscillation.
c) What is the W/L ratio of $M 1$ and $M 2$ to achieve the required negative resistance.
d) To cover 40 MHz frequency band, the RFIC-designer would like to use a varactor, replacing the C in the schematic with a Cvar, a varactor with a tuning range from Cmin to Cmax. Calculate the tuning range of the capacitor (\%). Is the required tuning range possible to achieve with a conventional CMOS varactor?

## Solution:

a) The model of the resonant circuit is shown in Fig. 3.2.


Fig. 3.2. Resonant circuit RLC
Without losses in the circuit $R_{s}=0$. The resonance frequency in the system is equal to:

$$
\begin{equation*}
f_{0}=\frac{1}{2 \pi \sqrt{L_{S} C}}=\frac{1}{2 \pi \sqrt{2(5 n H)(2.5 p F)}} \approx 1.007 \mathrm{GHz} \tag{3.1}
\end{equation*}
$$

With losses in the circuit $R_{s} \neq 0$. To simplify the analysis in the circuit, we transform the RL network in series into a parallel network as shown in Fig. 3.3.


Fig. 3.3. Transformation from series to parallel RL network
In this case the, the resonant frequency can be calculated as follows

$$
\begin{equation*}
f_{0}=\frac{1}{2 \pi \sqrt{L_{P} C}} \tag{3.2}
\end{equation*}
$$

where the inductance $L_{p}$ is expressed as

$$
\begin{equation*}
L_{p}=L_{s}\left(1+\frac{1}{Q^{2}}\right) \tag{3.3}
\end{equation*}
$$

Details of the $L_{P}$ derivation can be found in chapter 3 of Thomas H. Lee book: "The design of CMOS Radio Frequency Integrated Circuits", $2^{\text {nd }}$ edition. Substituting (3.3) into (3.2) and then evaluating for the resonant frequency, we have

$$
\begin{equation*}
f_{0}=\frac{Q}{2 \pi \sqrt{L_{s} C\left(Q^{2}+1\right)}}=\frac{5}{2 \pi \sqrt{2(5 n H)(2.5 p F)\left(5^{2}+1\right)}} \approx 0.987 \mathrm{GHz} \tag{3.4}
\end{equation*}
$$

b) The parallel resistance $R_{p}$ can be expressed as

$$
\begin{equation*}
R_{p}=Q \omega_{0} L_{p} \tag{3.5}
\end{equation*}
$$

The negative resistance $R_{n e g}$ is equal to $-R_{p}$. So, substituting (3.3) into (3.5) and solving for $-R_{p}$, we have

$$
\begin{equation*}
R_{\text {neg }}=-(5)(2 \pi \cdot 0.987 \mathrm{GHz})(10 \mathrm{nH})\left(1+\frac{1}{5^{2}}\right) \approx-322.4 \Omega \tag{3.6}
\end{equation*}
$$

c) $R_{n e g}$ seen by the RLC network can be found through the circuit shown in Fig. 3.4.

The current $i_{\text {in }}$ can be expressed as

$$
\begin{align*}
i_{i n} & =g_{m 1} V_{g s 1}  \tag{3.7}\\
-i_{i n} & =g_{m 2} V_{g s 2} \tag{3.8}
\end{align*}
$$



Fig. 3.4. Negative resistance seen by the RLC network
On the other hand, the voltage $V_{i n}$ can be expressed as

$$
\begin{equation*}
V_{i n}=V_{g s 2}-V_{g s 1}=-i_{i n}\left(\frac{1}{g_{m 2}}+\frac{1}{g_{m 1}}\right) \tag{3.9}
\end{equation*}
$$

Assuming that $g_{m 1}$ and $g_{m 2}$ are both identical, then $R_{n e g}$ seen by the RLC network equals to

$$
\begin{equation*}
R_{n e g}=\frac{V_{i n}}{i_{i n}}=-\left(\frac{1}{g_{m 2}}+\frac{1}{g_{m 1}}\right)=-\frac{2}{g_{m}} \tag{3.10}
\end{equation*}
$$

Since the transconductance $g_{m}$ is also expressed as $\sqrt{2 \mu_{n} C_{o x} I_{D}(W / L)}$, where $\mu_{n} C_{o x}=110 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $I_{D}=1 \mathrm{~mA},-R_{p}$ is

$$
\begin{equation*}
-R_{p}=-\frac{2}{\sqrt{2 \mu_{n} C_{o x} I_{D}(W / L)}} \tag{3.11}
\end{equation*}
$$

Solving for the ratio $W / L$, we have

$$
\begin{equation*}
\frac{W}{L}=\frac{2}{\mu_{n} C_{o x} I_{D} R_{p}^{2}} \approx 175 \tag{3.12}
\end{equation*}
$$

d) The tuning range of the capacitor, $\mathrm{T}=C_{\max }-C_{\min }$, can be expressed in terms of the frequency band through the equation 8.53 in Razavi's book as

$$
\begin{equation*}
\Delta \omega_{o s c} \approx \frac{1}{\sqrt{L_{1} C_{1}}} \frac{C_{v a r 2}-C_{v a r 1}}{2 C_{1}}=\frac{1}{\sqrt{L_{1} C_{1}}} \frac{T}{2 C_{1}} \tag{3.13}
\end{equation*}
$$

Therefore, solving for $T$ in (3.13), we have

$$
\begin{gather*}
T=\Delta \omega_{o s c} \sqrt{L_{1} C_{1}} 2 C_{1} \\
\Rightarrow T=2 \pi(40 \mathrm{MHz}) \sqrt{(10 \mathrm{nH})(2.5 \mathrm{pF})}(5.0 \mathrm{pF}) \approx 0.2 \mathrm{pF} \tag{3.14}
\end{gather*}
$$

## Problem 4

A single-transistor inductor-feedback oscillator is shown in Fig. 4.1.


Fig. 4.1. Single-transistor inductor-feedback oscillator
Find an expression for the frequency of oscillation and the value of $g_{m} R_{L}$ necessary for oscillation. Assume that output resistance of the transistor is negligible.

## Solution:

Write the node equations at the input and output.
$g_{m} V_{g s}+\frac{V_{\text {out }}}{R_{L}}+s C_{1} V_{\text {out }}+\frac{V_{\text {out }}-V_{g s}}{s L}=0$
and
$\frac{V_{\text {out }}-V_{g s}}{s L}=s C_{2} V_{g s} \Rightarrow V_{\text {out }}=V_{g s}\left(1+s^{2} L C_{2}\right)$


Small-Signal Model
$g_{m} V_{g s}+\left(\frac{1}{R_{L}}+s C_{1}+\frac{1}{s L}\right) V_{\text {out }}-\frac{V_{g s}}{s L}=0$
$g_{m} V_{g s}+\left(\frac{1}{R_{L}}+s C_{1}+\frac{1}{s L}\right)\left(1+s^{2} L C_{2}\right) V_{g s}-\frac{V_{g s}}{s L}=0$
$V_{g s}\left[g_{m}+\left(\frac{1}{R_{L}}+s C_{1}+\frac{1}{s L}\right)\left(1+s^{2} L C_{2}\right)-\frac{1}{s L}\right]=0$
Assuming that $V_{g s} \neq 0$ we find the oscillation condition
$g_{m}+\left(\frac{1}{R_{L}}+s C_{1}+\frac{1}{s L}\right)\left(1+s^{2} L C_{2}\right)-\frac{1}{s L}=0$

$$
\left(g_{m}+\frac{1}{R_{L}}-\frac{\omega^{2} L C_{2}}{R_{L}}\right)+j \omega\left(C_{1}-\omega^{2} L C_{1} C_{2}+C_{2}\right)=0
$$


$g_{m}+\frac{1}{R_{L}}=\frac{L C_{2}}{R_{L}} \omega_{o s c}^{2}$

$$
=\frac{1}{R_{L}}\left(1+\frac{C_{2}}{C_{1}}\right)
$$

$$
C_{1}-\omega^{2} L C_{1} C_{2}+C_{2}=0
$$

$$
g_{m} R_{L}=\frac{C_{2}}{C_{1}}
$$

$$
\omega_{o s c}=\sqrt{\frac{C_{1}+C_{2}}{L C_{1} C_{2}}}=\frac{1}{\sqrt{L C_{e q}}}
$$

