Tutorial 4: Oscillator

Problem 1

Suppose H(s) in the negative feedback system shown below satisfies the following conditions at a frequency of ω_1 : |H(s)| = 1, and $\angle H(s) = 170^\circ$.

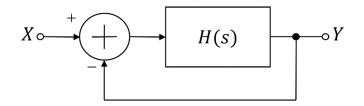


Fig. 1. Negative feedback system

Explain what happens to the phase and the amplitude of the output signal.

Problem 2

Prove that the series combination of the two tanks in Fig. 2(a) can be replaced by one tank as shown in Fig. 2(b).

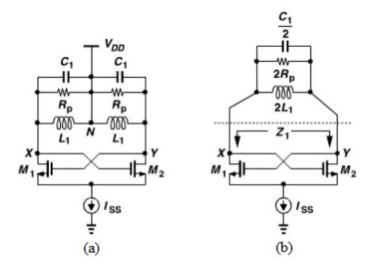


Fig. 2 (a) Cross-coupled oscillator. (b) with tanks merged

Problem 3

A negative resistance LC oscillator is shown in Fig. 3. The component values are L=5 nH, C = 2.5 pF, Inductor Q = 5 and $\mu_n C_{ox} = 110 \ \mu \text{A/V}^2$.

- a) Calculate the frequency of oscillation, without and with losses in the inductor.
- b) Calculate the value of negative resistance provided by the cross-coupled NMOS transistor pair to support oscillation.
- c) What is the W/L ratio of M1 and M2 to achieve the required negative resistance.

d) To cover 40 MHz frequency band, the RFIC-designer would like to use a varactor, replacing the C in the schematic with a Cvar, a varactor with a tuning range from Cmin to Cmax. Calculate the tuning range of the capacitor (%). Is the required tuning range possible to achieve with a conventional CMOS varactor?

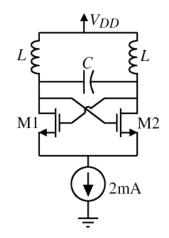


Fig. 3. Negative resistance LC oscillator

Problem 4

A single-transistor inductor-feedback oscillator is shown in Fig. 4.

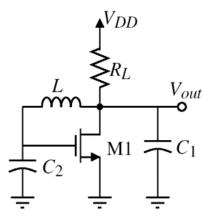
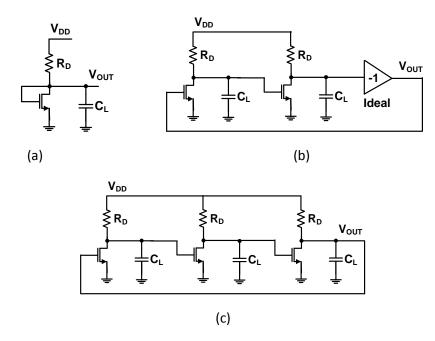



Fig. 4. Single-transistor inductor-feedback oscillator

Find an expression for the frequency of oscillation and the value of $g_m R_L$ necessary for oscillation. Assume that output resistance of the transistor is negligible.

Homework 1

Which of the following (a), (b), and (c) circuit oscillates? State the reason in terms of frequency dependent phase shift and DC phase shift.

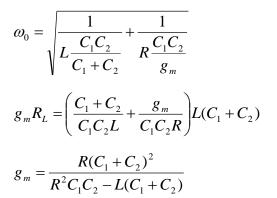
Answer:

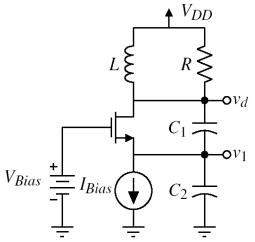
(a)	DC phase shift = 180° (frequency $\rightarrow 0$)
	Open loop circuit contains one pole
	=> Frequency dependent phase shift = 90° (at frequency $\rightarrow \infty$)
	Total phase shift = $90^{\circ} + 180^{\circ} = 270^{\circ} =>$ No oscillation.
(b)	DC phase shift = 180° (frequency $\rightarrow 0$)
	Open loop circuit contains two poles
	=> Frequency dependent phase shift = $90^{\circ} + 90^{\circ} = 180^{\circ}$ (at frequency $\rightarrow \infty$)
	Total phase shift = $180^{\circ} + 180^{\circ} = 360^{\circ}$
	But as frequency $\rightarrow \infty$ the loop gain vanishes => No oscillation.
(c)	DC phase shift = 180° (frequency $\rightarrow 0$)

Open loop circuit contains three poles

=> Frequency dependent phase shift = $90^{\circ} + 90^{\circ} + 90^{\circ} = 270^{\circ}$ (at frequency $\rightarrow \infty$)

Total phase shift = $180^{\circ} + 270^{\circ} = 450^{\circ}$ or 90°


However at $f = f_{p1,2,3} < \infty$, where f_p is the cut-off frequency of a stage, the frequency dependent phase shift = $45^\circ + 45^\circ + 45^\circ = 135^\circ$


Therefore for some $f_p < f < \infty$ the circuit may oscillate with a sufficient loop gain.

Homework 2

A Colpitts oscillator is shown in figure below. Find the oscillation frequency, ω_{osc} and the value of g_m necessary for oscillation, in terms of *L*, *C*₁, *C*₂ and *R*. Neglect channel-length modulation and the body effect.

Answer:

