Tutorial 3: Mixer Solutions

Problem 1

Consider the active mixer shown in the figure below where the LO has abrupt edges and a 50% duty cycle. Also, channel-length modulation and body effect are negligible. The load resistors exhibit mismatch, but the circuit is otherwise symmetric. Assume $M 1$ carries a bias current of $I_{S S}$. Determine the output offset voltage.

Fig. 1.1 Active mixer with load mismatch
Solution:
$V_{I F}(t)$ is expressed as

$$
\begin{align*}
V_{I F}(t) & =V_{I F}^{+}(t)-V_{I F}^{-}(t) \\
V_{I F}(t) & =i_{I F}^{+}(t) \cdot R_{D}-i_{I F}^{-}(t) \cdot(1+\alpha) R_{D} \\
\Rightarrow V_{I F}(t) & =\left(i_{I F}^{+}(t)-i_{I F}^{-}(t)\right) R_{D}-i_{I F}^{-}(t) \alpha R_{D} \tag{1.1}
\end{align*}
$$

Notice from (1.1) that the offset in $V_{I F}(t)$ corresponds to the second term, $i_{I F}^{-}(t) \cdot \alpha R_{D}$. Therefore, elaborating for $i_{I F}^{-}(t)$, which corresponds to the product between $i_{R F}(t)$ and a train of rectangular pulses with amplitude 1 and period $T_{L O}$. We have,

$$
\begin{equation*}
i_{I F}^{-}(t)=g_{m 1} i_{R F}(t) \cdot\left[\frac{1}{2}+\sum_{k=1}^{\infty} \operatorname{sinc}\left(\frac{k \pi}{2}\right) \cos \left(k \omega_{L O} t-\frac{3 k \pi}{2}\right)\right] \tag{1.2}
\end{equation*}
$$

Since, we are interested in $\omega_{L O}$, we work only with $k=1$ in (1.2), which simplifies to

$$
\begin{equation*}
i_{I F}^{-}(t)=i_{R F}(t) \cdot\left[\frac{1}{2}-\frac{2}{\pi} \sin \left(\omega_{L O} t\right)\right] \tag{1.3}
\end{equation*}
$$

On the other hand, $i_{R F}$ can be expressed as a complex envelope signal with a dc component by

$$
\begin{align*}
i_{R F}(t) & =I_{D C}+g_{m 1} V_{R F}(t) \\
\Rightarrow i_{R F}(t) & =I_{D C}+g_{m 1} \mathrm{a}(\mathrm{t}) \cos \left[\omega_{R F} t+\theta(t)\right] \tag{1.4}
\end{align*}
$$

Substituting (1.4) into (1.3) and solving for $i_{I F}^{-}(t)$, we have

$$
\begin{equation*}
i_{I F}^{-}(t)=\frac{I_{D C}}{2}+\frac{g_{m 1} V_{R F}(t)}{2}-\frac{2 I_{D C} \sin \left(\omega_{L O} t\right)}{\pi}-\frac{2 g_{m 1} V_{R F}(t) \sin \left(\omega_{L O} t\right)}{\pi} \tag{1.5}
\end{equation*}
$$

Applying a low-pass filter to (1.5), we obtain for $i_{I F}^{-}(t)$,

$$
\begin{equation*}
\Rightarrow i_{I F}^{-}(t)=\frac{I_{D C}}{2}-\frac{g_{m 1} \mathrm{a}(\mathrm{t})}{\pi}\left[\cos \left(\left(\omega_{R F}-\omega_{L O}\right) t+\theta(t)\right)\right] \tag{1.6}
\end{equation*}
$$

Now, calculating for the offset voltage, we have

$$
\begin{equation*}
V_{I F_{-} \text {offset }}(t)=\frac{I_{D C}}{2} \alpha R_{D}-\frac{g_{m 1} \mathrm{a}(\mathrm{t})}{\pi}\left[\cos \left(\left(\omega_{R F}-\omega_{L O}\right) t+\theta(t)\right)\right] \alpha R_{D} \tag{1.7}
\end{equation*}
$$

The first term in (1.7) is the DC_offset and it does not cancel. Notice that the larger the mismatch, the larger the DC_offset is. Then, the second term in (1.7) degrades the voltage gain at $\omega_{I F}$, so that

$$
\begin{equation*}
A_{V}=\frac{V_{I F}(t)}{V_{R F}(t)}=g_{m 1} R_{D}(2-\alpha) \tag{1.8}
\end{equation*}
$$

Problem 2

Shown below is the front-end of a $1.8-\mathrm{GHz}$ receiver. The LO frequency is chosen to be 900 MHz and the load inductors and capacitances resonate with a quality factor Q at IF. Assume $M 1$ is biased at a current $I 1$, and the mixer and LO are perfectly symmetric. Also assume $M 2$ and $M 3$ are ideal switches (they switch abruptly and completely). Compute (a) the measured level of the $900-\mathrm{MHz}$ at the output in the absence of an RF signal, (b) the LO-IF feedthrough with the presence only of the gate-drain capacitance $C_{G D}$. Neglect gate-source and gate-bulk capacitance.

Fig. 2.1 Receiver front-end
Solution:
a) The measured level of the $900-\mathrm{MHz}$ at the output in the absence of an RF signal.

$$
\begin{aligned}
V_{L O}^{+}(t) & =\frac{1}{2}+\frac{2}{\pi} \sin \left(\omega_{L O} t\right)+\frac{2}{3 \pi} \sin \left(3 \omega_{L O} t\right)+\frac{2}{5 \pi} \sin \left(5 \omega_{L O} t\right)+\cdots \\
V_{L O}^{-}(t) & =\frac{1}{2}-\frac{2}{\pi} \sin \left(\omega_{L O} t\right)-\frac{2}{3 \pi} \sin \left(3 \omega_{L O} t\right)-\frac{2}{5 \pi} \sin \left(5 \omega_{L O} t\right)+\cdots \\
i_{R F}(t) & =I_{1}+I_{R F} \cos \omega_{R F} t
\end{aligned}
$$

No RF signal: $I_{R F}=0 \Rightarrow i_{R F}(t)=I_{1}$. The output current at IF is given by:
$i_{I F}^{+}(t)=V_{L O}^{+}(t) \times i_{R F}(t)=\left[\frac{1}{2}+\frac{2}{\pi} \sin \left(\omega_{L O} t\right)+\frac{2}{3 \pi} \sin \left(3 \omega_{L O} t\right)+\frac{2}{5 \pi} \sin \left(5 \omega_{L O} t\right)+\cdots\right] \times I_{1}$
$i_{I F}^{+}(t)=\frac{I_{1}}{2}+\frac{2 I_{1}}{\pi} \sin \omega_{L O} t$
$i_{I F}^{-}(t)=V_{L O}^{-}(t) \times i_{R F}(t)=\left[\frac{1}{2}-\frac{2}{\pi} \sin \left(\omega_{L O} t\right)-\frac{2}{3 \pi} \sin \left(3 \omega_{L O} t\right)-\frac{2}{5 \pi} \sin \left(5 \omega_{L O} t\right)-\cdots\right] \times I_{1}$
$i_{I F}^{-}(t)=\frac{I_{1}}{2}-\frac{2 I_{1}}{\pi} \sin \omega_{L O} t$
$i_{I F}(t)=i_{I F}^{+}(t)-i_{I F}^{-}(t)=\frac{4 I_{1}}{\pi} \sin \omega_{L O} t$
$V_{I F}(t)=i_{I F}(t) \times R_{P}=\frac{4 I_{1} R_{P}}{\pi} \sin \omega_{L O} t$
b) Working with one of the single-ended sections and considering only the parasitic gate-drain capacitance $C_{G D}$, the LO-IF feedthrough can be derived from the circuit shown in Fig. 2.2. Notice that only $V_{L O}^{+}$is operating.

Fig. 2.2 (a) Single-ended with LO-IF feedthrough (b) transformation from parallel to series
From Fig. 2.2 (b), the presence of $V_{L O}^{+}$at node $V x$ can be derived by the following expressions,

$$
\begin{align*}
& \frac{V_{L O}^{+}-V x}{Z_{C}}=\frac{V x-V_{D D}}{Z_{L}+R_{S}} \\
\Rightarrow & V x\left[\frac{Z_{C}+Z_{L}+R_{S}}{\left(Z_{L}+R_{S}\right) Z_{C}}\right]=\frac{V_{L O}^{+}}{Z_{C}}+\frac{V_{D D}}{Z_{L}+R_{S}} \\
\Rightarrow & V x=\frac{V_{L O}^{+}\left(Z_{L}+R_{S}\right)}{Z_{C}+Z_{L}+R_{S}}+\frac{V_{D D} Z_{C}}{Z_{C}+Z_{L}+R_{S}} \tag{2.1}
\end{align*}
$$

The voltage $V_{L O}^{+}$is considered to be a train of rectangular pulses. Its representation in the time domain can be obtained from the Fourier series. Following the analysis in problem 1, but this time considering $\alpha=0.5$ and $V=1$, we have

$$
\begin{equation*}
V_{L O}^{+}=\frac{1}{2}+\sum_{k=1}^{\infty} \operatorname{sinc}\left(\frac{k \pi}{2}\right) \cos \left(k \omega_{L O} t-k \pi / 2\right) \tag{2.2}
\end{equation*}
$$

Since we are interested in the frequency component at $\omega_{L O}$, we work with $k=1$. Substituting (2.2) into (2.1), the LO-IF feedthrough can be expressed as,

$$
\begin{align*}
V x & =\frac{\left(Z_{L}+R_{S}\right)}{Z_{C}+Z_{L}+R_{S}}\left[\frac{1}{2}+\frac{2}{\pi} \cos \left(\omega_{L O} t-\pi / 2\right)\right]+\frac{V_{D D} Z_{C}}{Z_{C}+Z_{L}+R_{S}} \\
& =\frac{\left(Z_{L}+R_{S}\right)}{Z_{C}+Z_{L}+R_{S}}\left[\frac{1}{2}+\frac{2}{\pi} \sin \left(\omega_{L O} t\right)\right]+\frac{V_{D D} Z_{C}}{Z_{C}+Z_{L}+R_{S}} \tag{2.3}
\end{align*}
$$

Carrying out the same analysis, but for $V_{L O}^{-}$with $k=1$, we have

$$
\begin{equation*}
\left.V_{L O}^{-}\right|_{k=1}=\frac{1}{2}-\frac{2}{\pi} \sin \left(\omega_{L O} t\right) \tag{2.4}
\end{equation*}
$$

Therefore, the LO-IF feedthrough in the other section of the circuit, $V y$ equals

$$
\begin{equation*}
V y=\frac{\left(Z_{L}+R_{S}\right)}{Z_{C}+Z_{L}+R_{S}}\left[\frac{1}{2}-\frac{2}{\pi} \sin \left(\omega_{L O} t\right)\right]+\frac{V_{D D} Z_{C}}{Z_{C}+Z_{L}+R_{S}} \tag{2.5}
\end{equation*}
$$

Finally, the differential voltage $V x-V y$, corresponding to the total contribution of the LO-IF feedthrough is expressed as

$$
\begin{equation*}
V x-V y=\frac{4}{\pi} \frac{\left(Z_{L}+R_{S}\right)}{\left(Z_{C}+Z_{L}+R_{S}\right)} \sin \left(\omega_{L O} t\right) \tag{2.6}
\end{equation*}
$$

Notice that the DC component is cancelled out

Problem 3

The circuit shown below is a dual-gate mixer used in traditional microwave design. Assume abrupt edges and a 50% duty cycle for the LO and neglect channel-length modulation and body effect.

Fig. 3.1 Dual-gate mixer
a) Assume that $M 1$ is an ideal switch. Determine the frequency components which appear at the mixer IF port.
b) Assume when $M 1$ is on, it has an on-resistance of $R_{o n 1}$. Compute the voltage conversion gain of the circuit. Assume $M 2$ does not enter the triode region and denote its transconductance by $g_{m 2}$.
c) Assume when $M 1$ is an ideal switch. Compute the voltage conversion gain of the circuit.

Solution:
a) The current appearing in the transistor $M 2$ due to the input voltage $V_{R F}$ can be expressed as

$$
\begin{equation*}
i_{R F}(t)=I_{D C}+g_{m 2} V_{R F}(t) \tag{3.1}
\end{equation*}
$$

Due to the switching action of $M 1$, the resultant current at the output corresponds to the product between $i_{R F}$ and a rectangular signal with 50% duty cycle. This can be expressed as follows

$$
\begin{equation*}
i_{\text {out }}(t)=\left[I_{D C}+g_{m 2} V_{R F}(t)\right] \times\left[\frac{1}{2}+\sum_{k=1}^{\infty} \operatorname{sinc}\left(\frac{k \pi}{2}\right) \cos \left(k \omega_{L O} t-k \pi / 2\right)\right] \tag{3.2}
\end{equation*}
$$

Besides, $V_{R F}$ can be expressed as a complex envelope by

$$
\begin{equation*}
V_{R F}(t)=\mathrm{a}(\mathrm{t}) \cdot \cos \left[\omega_{R F} t+\theta(t)\right] \tag{3.3}
\end{equation*}
$$

Substituting (3.3) into (3.2) we have

$$
\begin{equation*}
i_{\text {out }}(t)=\left[I_{D C}+g_{m 2} \mathrm{a}(\mathrm{t}) \cos \left[\omega_{R F} t+\theta(t)\right]\right] \cdot\left[\sum_{k=1}^{\infty} \frac{1}{2}+\operatorname{sinc}\left(\frac{k \pi}{2}\right) \cos \left(k \omega_{L O} t-k \pi / 2\right)\right] \tag{3.4}
\end{equation*}
$$

From (3.4) we can obtain all frequency components at the mixer's output for different k values. Working with $k=1$, then (3.4) can be expressed as

$$
\begin{gather*}
i_{\text {out }}(t)=\left[I_{D C}+g_{m 2} \mathrm{a}(\mathrm{t}) \cos \left[\omega_{R F} t+\theta(t)\right]\right] \cdot\left[\frac{1}{2}+\frac{2}{\pi} \sin \left(\omega_{L O} t\right)\right] \\
\Rightarrow i_{\text {out }}(t)=\underbrace{\frac{I_{D C}}{2}}_{\text {DC Component }}+\underbrace{\frac{2 I_{D C}}{\pi} \sin \left(\omega_{L O} t\right)}_{\text {LO Mixing Product }}+\underbrace{\frac{g_{m 2} \mathrm{a}(\mathrm{t})}{2} \cos \left[\omega_{R F} t+\theta(t)\right]}_{\text {RF Mixing Product }} \\
\quad+\frac{g_{m 2} \mathrm{a}(\mathrm{t})}{\pi}[\underbrace{\sin \left(\left(\omega_{R F}-\omega_{L O}\right) t+\theta(t)\right)}_{I F}+\underbrace{\sin \left(\left(\omega_{R F}+\omega_{L O}\right) t+\theta(t)\right)}_{H F(\text { to be filtered) }}] \tag{3.5}
\end{gather*}
$$

b) The output voltage $V_{\text {out }}$ due to the action of $V_{R F}$ and the presence of on-resistance $R_{o n}$ can be derived through the small-signal model shown in Fig. 3.2.

Fig. 3.2 Small-signal model with on-resistance $R_{\text {on }}$
Initially, solving for $V_{G S}$, we have

$$
\begin{align*}
& V_{G S}=V_{R F}-V x \\
&=V_{R F}-V_{G S} g_{m 2} R_{o n} \\
& \Rightarrow V_{G S}\left(1+g_{m 2} R_{o n}\right)=V_{R F} \\
& \Rightarrow V_{G S}=\frac{V_{R F}}{1+g_{m 2} R_{o n}} \tag{3.6}
\end{align*}
$$

On the other hand, $V_{\text {out }}$ can be expressed as

$$
\begin{equation*}
V_{\text {out }}=-g_{m 2} V_{G S} R_{D} \tag{3.7}
\end{equation*}
$$

Substituting (3.6) into (3.7), we have

$$
\begin{equation*}
V_{o u t}=\frac{-g_{m 2} R_{D}}{1+g_{m 2} R_{o n}} V_{R F}=\alpha V_{R F} \tag{3.8}
\end{equation*}
$$

To obtain the conversion gain, we have to find the IF component. This can be found by the product of $V_{\text {out }}$ and the rectangular LO signal with $k=1$ and using bandpass filter centered at $\omega_{I F}$. This can be expressed as

$$
\begin{align*}
V_{I F} & =B P F\left\{\alpha V_{R F}(t) \times\left[\frac{1}{2}+\frac{2}{\pi} \cos \left(\omega_{L O} t-\pi / 2\right)\right]\right\} \\
& =B P F\{d c+\frac{\mathrm{a}(\mathrm{t}) \alpha}{\pi} \cdot \cos [\underbrace{\left(\omega_{R F}-\omega_{L O}\right)}_{\omega_{I F}} t+\theta(t)-\pi / 2]+H F \operatorname{comp}\} \\
& =\frac{\alpha \mathrm{a}(\mathrm{t})}{\pi} \cdot \cos [\underbrace{\left(\omega_{R F}-\omega_{L O}\right)}_{\omega_{I F}} t+\theta(t)-\pi / 2] \tag{3.9}
\end{align*}
$$

Then, the voltage conversion gain is equal to

$$
\begin{equation*}
A_{V}=\frac{V_{I F}(t)}{V_{R F}(t)} \tag{3.10}
\end{equation*}
$$

Substituting (3.3) and (3.9) into (3.10), we have

$$
\begin{equation*}
A_{V}=\frac{\alpha \mathrm{a}(\mathrm{t})}{\mathrm{a}(\mathrm{t}) \pi}=\frac{\alpha}{\pi}=\frac{-g_{m 2} R_{D}}{\pi\left(1+g_{m 2} R_{o n}\right)} \tag{3.11}
\end{equation*}
$$

c) When $M 1$ operates as an ideal switch the on-resistance $R_{o n}$ equals zero, and the voltage conversion gain can be expressed as

$$
\begin{equation*}
A_{V}=\frac{-g_{m 2} R_{D}}{\pi} \tag{3.12}
\end{equation*}
$$

Appendix: Fourier series representation of rectangular pulses

A train of rectangular pulses as shown in Fig A.1.

Fig. A.1. Time-domain representation of rectangular pulses
Its representation in the time domain can be obtained from the Fourier series as
$x(t)=C_{0}+\sum_{k=1}^{\infty} 2 C_{k} e^{j k \omega_{0} t}$
where C_{k} is the complex coefficient expressed by
$C_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \omega_{L O} t} d t$
Now, solving for C_{k}

$$
\begin{aligned}
& C_{k}=\frac{V}{T_{0}} \int_{0}^{T_{0} / 2} e^{-j k \omega_{L O} t} d t=\frac{j V}{2 \pi k}\left(e^{-j \pi k}-1\right) \\
& =\frac{j V}{2 \pi k}\left[\left[\cos \left(\frac{k \pi}{2}\right)-j \sin \left(\frac{k \pi}{2}\right)\right]^{2}-1\right] \\
& =\frac{j V}{2 \pi k}\left[\cos ^{2}\left(\frac{k \pi}{2}\right)-2 j \cos \left(\frac{k \pi}{2}\right) \sin \left(\frac{k \pi}{2}\right)-\sin ^{2}\left(\frac{k \pi}{2}\right)-1\right] \\
& =\frac{j V}{2 \pi k}\left[-2 j \cos \left(\frac{k \pi}{2}\right) \sin \left(\frac{k \pi}{2}\right)-2 \sin ^{2}\left(\frac{k \pi}{2}\right)\right] \\
& =\frac{V}{\pi k} \sin \left(\frac{k \pi}{2}\right)\left[\cos \left(\frac{k \pi}{2}\right)-j \sin \left(\frac{k \pi}{2}\right)\right] \\
& =\frac{V}{\pi k} \sin \left(\frac{k \pi}{2}\right) e^{-j \frac{k \pi}{2}}=\frac{V}{2} \operatorname{sinc}\left(\frac{k \pi}{2}\right) e^{-j \frac{k \pi}{2}}
\end{aligned}
$$

Now, for $x(t)$ with $C_{0}=V / 2$, we have
$x(t)=\frac{V}{2}+\sum_{k=1}^{\infty} V \operatorname{sinc}\left(\frac{k \pi}{2}\right) \cos \left(k \omega_{0} t-k \pi / 2\right)$

