# **Tutorial 1: Noise**

## **Problem 1**

In the amplifier schematic shown in Fig. 1.1, determine the input-referred noise voltage. Consider only the thermal noise sources and ignore the gate noise of the transistors. Neglect channel-length modulation and body effect.

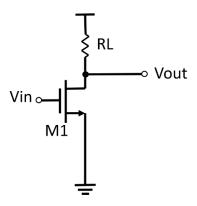



Fig. 1. Common-source amplifier

#### **Problem 2**

Determine the noise figure of the stages below with respect to a source impedance of  $R_S$ . Neglect body effect, but not channel-length modulation. Assume the current sources  $I_1$ ,  $I_2$  are noiseless.

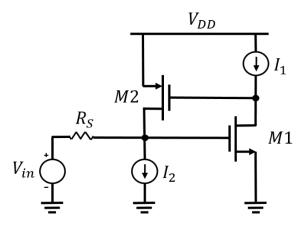



Fig. 2. Stages for NF calculation

#### **Problem 3**

A two-stage amplifier is shown below. Determine the noise factor of this amplifier. Consider only the thermal noise sources and ignore the gate noise of the transistors. Assume that  $R_1$  and  $R_2$  are noiseless and ignore all the parasitics. Furthermore assume that  $\lambda = 0$ .

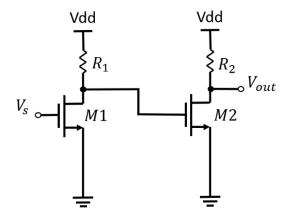
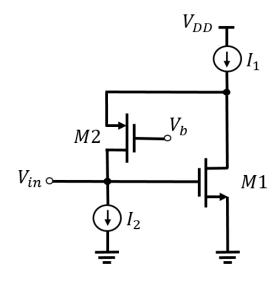



Fig. 3. A two-stage amplifier


#### **Problem 4**

A circuit exhibits a noise figure of 3 dB.

- a) What percentage of the output noise power is due to the source resistance,  $R_s$ ?
- b) Repeat the problem for NF = 1 dB.

### Homework

Determine the noise figure of the stages below with respect to a source impedance of  $R_s$ . Neglect channel-length modulation and body effect.

