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7.1 General considerations
�3

• Reduction of off-chip components =>  Reduction of 
system cost. Integration is good! 

• On-chip inductors: 

• With inductive loads (b), we can obtain higher operating 
frequency and better operation at low supply voltages.
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Bond wires = good inductors
�4

• High quality
• Hard to model
• The bond wires and package pins connecting chip to 

outside world may experience significant coupling, 
creating crosstalk between parts of a transceiver. 
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7.2 Inductors
�5

• Typically realized as metal 
spirals.

• Larger inductance than a 
straight wire.

• Spiral is implemented on top 
metal layer to minimize parasitic 
resistance and capacitance. 
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�6

• A two dimensional square 
spiral inductor is fully 
specified by the following four 
quantities:
• Outer dimension, Dout
• Line width, W
• Line spacing, S
• Number of turns, N

• The inductance primarily 
depends on the number of 
turns and the diameter of each 
turn 
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�7

 Magnetic Coupling Factor 
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Inductor Structures in RFICs
�8

• Various inductor geometries shown below are result of 
improving the trade-offs in inductor design, specifically 
those between (a) quality factor and the capacitance, (b) 
inductance and the dimensions.

• Note: These various inductor geometries provide 
additional degrees of  
freedom but also  
complicate the  
modeling task.
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Inductance calculations
�9

• Closed form inductance equations can be found based 
on  (1) Curve fitting methods, (2) Physical properties of 
inductors.

• This equation is an empirical formula which estimates 
inductance of 5 nH to 50 nH square spiral inductor 
within 10% error:

Am – Metal area ,  Atot – Total Inductor area
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Inductance calculations
�10

• Already modeled inductors in a PDK library may exist
• Otherwise: EM simulations
• Popular tools: 

• Momentum (Keysight), integrated with ADS and 
Cadence Virtuoso. 2.5 D

• HFSS (Ansoft): 3D
• Sonnett
• (Asitic in the book: old, student work…)

• Output: linear model (n-port s-parameter)
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Example: Momentum
�11

• Technology file with layers, via, resistivities, etc., usually 
supplied by the PDK vendor.

• Or can be created by a user, if enough information is 
given in the design manual.
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Example: Momentum
�12

• Cadence integration (example with transformer = double ind)
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Parasitic Capacitance of Integrated Inductors
�13

• Planar spiral inductor suffers from parasitic capacitance 
because the metal lines of the inductor exhibit parallel 
plate capacitance and adjacent turns bear fringe 
capacitance. 

Bottom-Plate capacitance Interwinding capacitances
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Self-resonance frequency 
�14

• The frequency at which an inductor resonates with its own 
capacitances is called the “self-resonance frequency” (fSR). 

• The inductor behaves as a capacitor at frequencies above 
fSR. For this reason, fSR serves as a measure of the 
maximum frequency at which a given inductor can be used. 
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7.2.5 Loss Mechanisms: Metal Resistance
�15

• Metal resistance Rs of spiral inductor of inductance L1 
• Q = Quality factor of the inductor (measure of loss in the 

inductor)  
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�16
Book ”For example, a 5-nH inductor operating at 5 GHz with an RS of 15.7 ︎ has a Q of 10.”
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�17
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Loss Mechanisms: Skin Effect �18

• Current distribution in a conductor at  
(a) Low frequency         (b) High frequency

Skin depth = 
Extra 
resistance   = 
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Loss Mechanisms: Current crowding �19

• At fcrit , the magnetic field produced by adjacent turn 
induces eddy current, causing unequal distribution of 
current across the conductor width, hence altering the 
effective resistance of the turn.
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Loss Mechanisms: Current crowding �20

• As current flows through a smaller width of conductor, this 
causes a reduction in the effective area  between the metal 
and substrate, hence there is a reduction in the total 
capacitance.
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7.2.6 Inductor Modeling
�21

• A constant series resistance Rs model inductor loss for 
limited range of frequencies.

• A constant parallel resistance Rp model inductor loss for 
narrow range of frequencies.

• Note: The behavior of Q of inductor predicted by above 
two models has suggested opposite trends of Q with 
frequency.

Q = L1 ω/Rs
Q = Rp  /L1 ω
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Modeling Loss by Both Series and Parallel Resistors
�22
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Broadband Model of Inductor �23

• At low frequencies current is uniformly distributed thorough 
the conductor and model reduces to R1||R2||.....||Rn

• As frequency increases the current moves away from the 
center of the conductor, as modeled by rising impedance of 
inductors in each branch.

Simple	model Model	with	skin	effect
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Compact inductor models
�24
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Symmetrical inductor
�25

• Differential circuits can employ a single symmetric inductor 
instead of two asymmetric inductors. Saves area and have 
high Q, but higher interwinding capacitance (lower fSR).
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Equivalent Lumped Interwinding Capacitance
�26

• We unwind the structure as depicted below, assuming that all unit 
inductances are equal and so are all unit capacitances. 

• Resulting equivalent lumped interwinding capacitance of a 
symmetrical inductor is typically much larger than capacitance of 
substrate, dominating self resonance frequency.
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Inductor magnetic coupling
�27
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Inductors with Ground Shield 
�28

• This structure allows the displacement current to flow through the 
low resistance path to ground to avoid electrical loss through 
substrate.

• Eddy currents through a continuous shield drastically reduce 
inductance and Q, so a “patterned” shield is used.

• This shield reduces the effect of capacitive coupling to substrate.
• Eddy currents of magnetic coupling still flows through substrate.
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7.3 Transformers
�29

• Useful function of transformer in RF Design:
• Impedance matching.
• Feedback and feedforward with positive and negative polarity.
• Single ended to differential conversion and vice-verse.
• AC coupling between stages.

• Well-designed transformer:
• Low series resistance in primary and secondary windings.
• High magnetic coupling between primary and secondary 

windings.
• Low capacitive coupling between primary and secondary 

windings.
• Low parasitic capacitance to the substrate.
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Transformer Structures
�30

• Transformer derived from a symmetric inductor:
• Segments AB and CD are mutually coupled inductors.
• Primary and secondary are identical so this is a 1:1 

transformer 
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Transformer Structures: examples - I
�31



TSEK03 Integrated Radio Frequency Circuits 2018/Ted Johansson

Transformer Structures: examples - II
�32
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Transformer Structures: examples - III
�33
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Stacked transformers
�34

• Higher magnetic coupling.
• Unlike planar structures, primary and secondary can be 

identical and symmetrical.
• Overall area is less than planar structure.
• Larger capacitive coupling compared to planar structure.
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Transformer modeling
�35

• Due to high complexity of models, it is very difficult to find 
the values of each component from measurement or field 
simulations. 

• Typically n-port with s-parameter tables in the simulators.
• Sometimes convergence difficulties, especially when f -> 0.
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7.4 Transmission lines
�36

• When the distance of a connection (wire) is comparable 
to the wavelength.

• f = 1 GHz => l = 30 cm, f = 100 GHz => 3 mm
• More PCB-level aspect + cables, unless very high 

frequency circuit.
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• Circuit + PCB: Microstrip lines realized in top-most 
metal layer and ground plane is in lower metal layer. 
Hence have minimum interaction between signal line 
and substrate.

• Characteristic impedance Z0:

Transmission lines
�37
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Transmission lines
�38
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7.5 Varactors
�39

• Varactor = voltage dependent capacitor
• Important properties:

– capacitance range (vs. voltage)
– quality factor (parasitic series resistance)

• Two ways to implement on an IC:
– pn-junction (reverse-biased) - older technologies
– MOSFET transistor - today
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Varactors: pn-junction
�40

• Reverse-biased pn-junction (diode)
• In most IC:s, the substrate is p- and grounded on the 

backside.
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Varactors: pn-junction
�41

• Geometry-dependent parasitics, hard to simulate and model.



TSEK03 Integrated Radio Frequency Circuits 2018/Ted Johansson

Varactors: pn-junction
�42

• Capacitance for a planar reverse pn-junction at voltage VD

Cj0 = cap at zero voltage

V0 = "built-in potential" (about 0.7 V in silicon)
m ≈ 0.3 for CMOS   
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Varactors: MOSFET
�43

• The gate-substrate capacitance of an ordinary MOSFET 
can also be used as a varactor.

• But characteristics of a normal transistor is not ideal for 
use as a C vs. V-device.
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Varactors: MOSFET
�44

• Instead, place the NMOS-transistor in an nwell. Now it does 
not work as a transistor anymore, just a capacitor with better 
characteristics. This is called an "accumulation-mode" MOS 
varactor.

• For 65 nm CMOS, 
Cmin and Cmax 
are reached at  
-/+ 0.5 V.
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Varactors: MOSFET
�45

• The Q of MOS varactors is determined by the resistance 
between the source and drain terminals.

• Q also varies with C: Q = 1/(ωRC)
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Varactors: MOSFET
�46

• Overlap capacitance shifts the C/V characteristic up, 
yielding a ratio of (Cmax + 2WCov)/(Cmin + 2WCov)

• Typical Cmax/Cmin ratios = 2-4
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Example 7.34
�47

• A MOS varactor realized in 65-nm technology has an 
effective length of 50 nm and a Cov of 0.09 fF/μm. If Cox = 17 
fF/μm2, determine the largest capacitance range that the 
varactor can provide. 
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7.6 Constant capacitors
�48

• Critical parameters of capacitors used in RF IC 
design:
• Capacitance density
• Parasitic capacitance
• Q of the capacitor

• MOS capacitor
• MIM capacitor
• Metal plate (MOM) capacitor
• Fringe (grid) capacitor
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MOS capacitor
�49

• One long finger having resistance

• Multiple short fingers having resistance

• Since N fingers appear in parallel, Ron,b = Ron,u/N = Ron,a/N2. 
That is, the decomposition of the device into N parallel fingers 
reduces the resistance by a factor of N2. 
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Metal-Insulator-Metal (MIM) Capacitor
�50

• Parallel plate capacitor.
• Usually 1-2 additional  

masks => thinner insulator 
to have better Cox/area.
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Metal-Plate (MOM) Capacitor
�51

• Parallel plate capacitor.
• This structure employs planes in different metal layers
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Fringe Capacitor
�52

• Fringe capacitor consists of narrow metal lines with minimum 
spacing.

• The lateral electric field between adjacent metal lines leads to 
a high capacitance density.

• No additional masks or processing.




