# TSEK03: Radio Frequency Integrated Circuits (RFIC)

Lecture 1a: Introduction

Ted Johansson, EKS, ISY

<u>ted.johansson@liu.se</u>



# RFIC – Main Objectives

- Advanced continuation of TSEK02 Radio Electronics
- Main focus is on CMOS digital transceivers
- Main building blocks of digital transmitters and receivers
- Often the RX is more demanding => focus on downconversion, noise calculations/considerations
- Different architectures for each block are presented
- Design trade-offs for these building blocks are discussed
- Tutorials: dedicated to calculation of different metrics associated to these blocks (a lot of circuit analysis!)
- Lab sessions: main focus is on practical design issues, both measurements and simulations.



# RFIC – Course Organization

Lectures: 11 x 2h

Tutorials: 6 x 2h

Labs: 3 x 4 h – Sign-up is required for Lab 1 (ES lab)
 (if more than six students)

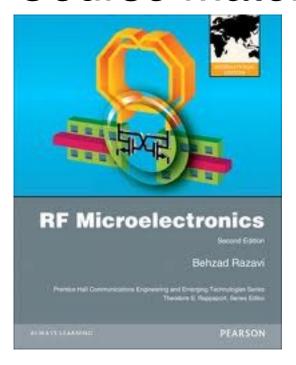
 Examination: Written exam at the end of the course To pass: Attend the labs (1.5 HP)

Pass the written exam (4.5 HP)

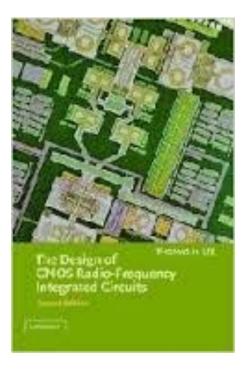
Examinations: 2018-10-22, 08-12
 2019-01-07, 14-18
 Aug 2019



## Schedule


- Link to TimeEdit: <a href="https://cloud.timeedit.net/liu/web/schema/schema/">https://cloud.timeedit.net/liu/web/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/schema/sc
- Location "Nollstället" for all lectures and tutorials.
- Lab 1: LNA circuit design in Cadence, computer lab (Sep 26)
- Lab2: LNA measurements, EKS-lab, 3D:542, 6 students/group, sign up (Doodle?) (Oct 3 + 10)
- Lab 3: Mixer circuit design in Cadence, computer lab (Oct 17)

#### Labs


- All labs include have preparatory material that you should read carefully and assignments in the lab manual that you should complete prior to performing the lab work.
- Lab 1 & 3 are Cadence spectre simulation labs of LNA and mixer performance.
- Lab 2 is about measurements of performance parameters of a low-noise amplifier (LNA) operating in the FM broadcast band: linearity, compression point, SFDR, noise figure. <u>Sign-up is required</u>, 6 students each time.
- Lab manuals will be downloadable from the course home page.



#### Course material



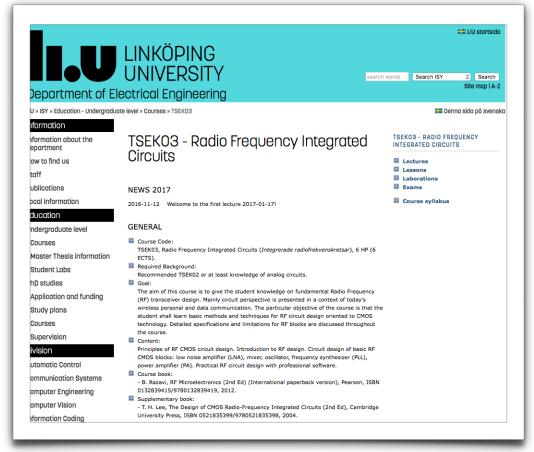
B. Razavi, RF Microelectronics, 2<sup>nd</sup> ed., Prentice Hall, 2012 (paper back int. version).



T. H. Lee, The design of CMOS radiofrequency integrated circuits, 2<sup>nd</sup> ed., Cambridge, 2004, (optional).








## Course homepage

www.isy.liu.se/en/edu/kurs/TSEK03/

Or just google "TSEK03"!

Lecture notes, tutorials + solutions, home work, lab manuals + reading, old exams.





#### RFIC - Staff

- Ted Johansson
- Docent, Adjunct Professor
- Integrated Circuits and Systems (EKS), Dept. of Electrical Engineering (ISY)
- ted.johansson@liu.se, people.isy.liu.se/eks/ted/
- Lectures, examiner.



#### Ted Johansson: CV in short

- 1985: M.Sc. (Y, LiU + RWTH, Germany)
- 1985-1989: Institute of Microelectronics, Kista
- 1989-2002: Ericsson Microelectronics, Kista
- 1992-1998: Industrial PhD (LiU)
- 2002-2007: Infineon Technologies, Kista
- 2008-2011: Huawei R&D Center, Kista
- Own company/consulting 2008-
- Adjunct professor (external, part-time): 2009-Docent 2015

Research on PA design in CMOS

PhD supervision

2015-/HT2: undergraduate course TSEK02

2015-/VT1: undergraduate course TSEK03

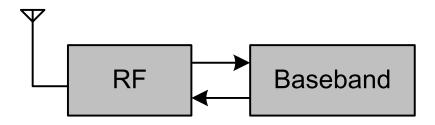
2017-/HT1: undergraduate course TSEK38







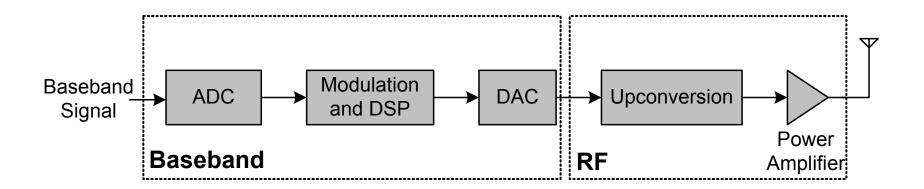
#### RFIC - Staff


- Oscar Morales
- Research Assistant
- Integrated Circuits and Systems (EKS), Dept. of Electrical Engineering (ISY)
- oscar.morales@liu.se

Tutorials, labs.



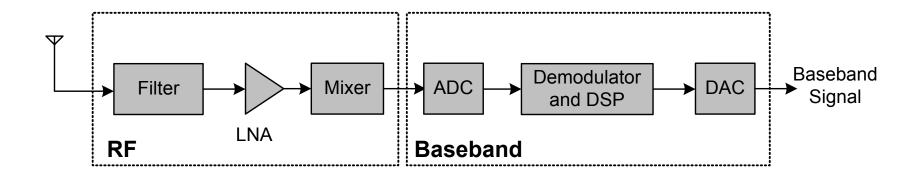



RF Transceivers



- RF section consists of mostly analog circuits.
- Baseband is mostly digital and it processes data, which should be sent to or received from the RF part.
- In this course, we will focus on building blocks in the RF part.

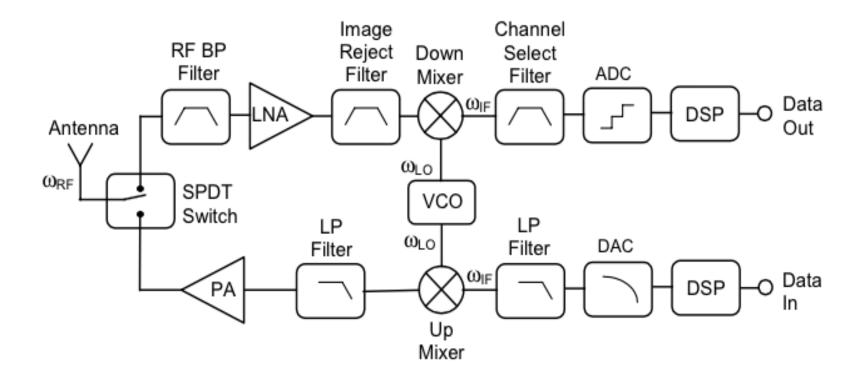



Digital RF Transmitter



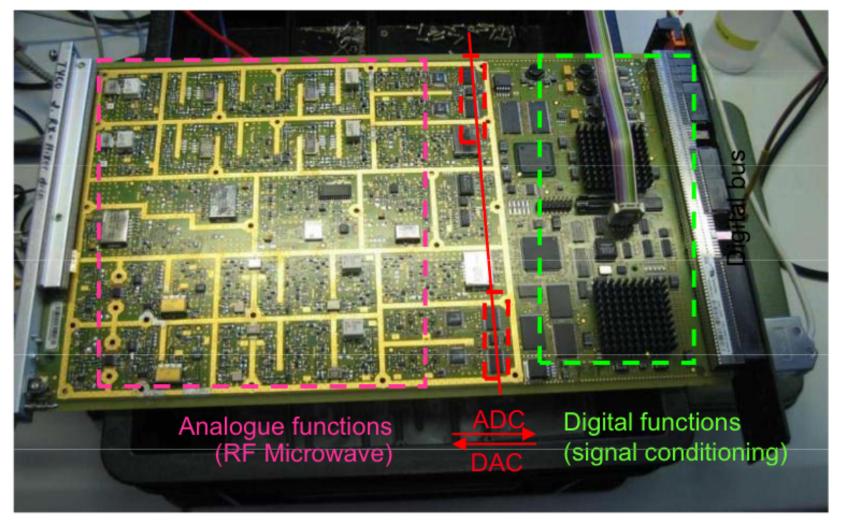
- Baseband signal is compressed and coded and modulated in the first step.
- In the RF part, upconversion is performed and the signal is amplified in order to be transmitted.




Digital RF Receiver



- In the RF part, received signal is filtered and amplified by a low-noise amplifier (LNA). Then image rejection and down conversion is performed.
- Decoding and demodulation is performed in baseband section.




"Real" Superheterodyne "sampling-IF" (TDD)





# Analog vs. digital – the radio





- RF building blocks which are used in RF digital transceivers are discussed in this course:
  - Low-noise amplifiers (LNAs)
  - Mixers
  - Oscillators
  - Frequency synthesizers (PLLs)
  - Power amplifiers (PAs)
- Different design perspectives and with different architectures are discussed
- Performance metrics are introduced
- Practical design challenges are presented



#### LECTURES OVERVIEW

L1: Course introduction. Noise, Ch 2.3.

Tu1: noise

L2: continued

L3: Linearity, impedance transformation, s-parameters, Ch. 2.2, 2.5, 2.6. LNA, Ch. 5.1-5.3.

L4: continued
Tu2: LNA

L5: Mixers, Ch 6.1-6.3.

L6: continued Tu3: mixers

L7: Passive devices, Ch 7.

L8: Oscillators, Ch. 8.1-8.7

■ L9: continued Tu4: oscillators

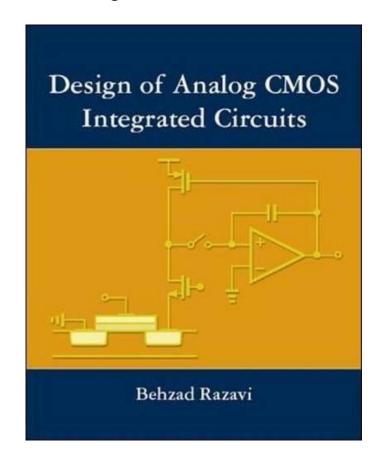
L10: PLL, Ch.9.1-9.3 + highlights from Ch. 10 and 11.

L11: PA, Ch. 12.1-12.4.
Tu5: PLL + PA

Tu6: repetition



# Background material/knowledge


- Analog CMOS design (circuit analysis, oscillators, PLL; Razavi's Analog book).
- System understanding: TSEK02 Radio Electronics (Razavi RF book ch 2 (parts), 3, 4).
- Transfer functions, Laplace transforms.

| Chapter    | Concept | Architecture | Circuit analysis | Theory |
|------------|---------|--------------|------------------|--------|
| Noise      | +       | -            | +++              | +      |
| LNA        | +       | ++           | +++              | +      |
| Mixer      | ++      | ++           | ++               | ++     |
| Oscillator | ++      | +            | ++               | +      |
| PLL        | +++     | +++          | +                | +++    |
| PA         | +       | +            | -                |        |



# Background material/knowledge

- Razavi's Analog book, used in TSEK37 Analog CMOS.
- circuit analysis, oscillators, PLL.



