
Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Lecture - 3 - Task synchronization
TSEA81

Computer Engineering and Real-time Systems

Linköping University
Sweden



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

This document is released - 2014-11-10 - first version

Author - Ola Dahl, Andreas Ehliar



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Asymmetric synchronization

• One-way synchronization

• One task P1 informs another task P2 that P2 can
continue its execution

• Can be implemented using a semaphore, where P1
performs a Signal-operation and P2 performs a
Wait-operation



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Time synchronization

Consider a clock, as used in the first two assignments in the
course. The following observations can be done.

• Calling usleep makes the calling task wait relative to the
time of the call. The actual clock period will be larger
than the time specified to usleep, since the clock task also
updates and displays the time.

• Timing can be improved by instead calling clock nanosleep
with the TIMER ABSTIME flag set, which makes the
calling task wait until a specified time instant.

• Timing can also be improved by having a higher prioritized
task (a tick task) which calls usleep and then trigger a
clock task using asymmetric synchronization. Here, the
tick task does nothing else in its while-loop, and the clock
task updates and displays time in its while loop.



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Assignment 2 - Alarm Clock

Design and implementation considerations:

• Determine, using pseudocode or drawings, the main
actions for each task, to be performed inside the
while-loop.

• Think about how the tasks use shared resources.

• There is a difference between an enabled alarm (the alarm
is set), and an activated alarm (the alarm is active, i.e.
the clock is ringing).



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Asymmetric synchronization and
interrupt handlers

• Sometimes it is required that a task shall wait for an
external event.

• Tasks waiting for time to expire wait for the external event
”timer interrupt occurred N times”. When this happens,
the interrupt handler makes the task ready for execution.

• Asymmetric synchronization using a semaphore, can be
implemented between an interrupt handler and a task.
The interrupt handler does Signal and the task does Wait,
on the semaphore. In this way, a task can wait for an
external event, e.g. the pressing of a button, the arrival of
data on a communication channel, etc.



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Symmetric synchronization - Tasks wait for each other, e.g.
during a data transfer.
Can be implemented using semaphores, as

Process P1 Process P2

{ {

while (1) while (1)

{ {

. .

. .

Prepare data .

Write data Wait(Data_Ready)

Signal(Data_Ready) Read data

Wait(Data_Received) Signal(Data_Received)

. Process data

} }

} }



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Producers and Consumers

A producer and a consumer, and a buffer used for their
communication:

Typical requirements:

• A producer shall wait if the buffer is full.

• A consumer shall wait if the buffer is empty.



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

A buffer can be declared as

/* buffer size */

#define BUFFER_SIZE 10

/* buffer data */

char Buffer_Data[BUFFER_SIZE];

/* positions in buffer */

int In_Pos;

int Out_Pos;

/* number of elements in buffer */

int Count;

The buffer can be protected using a mutex.



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Conditional critical regions

Conditional critical regions are critical regions associated with
conditions.
Requirements on functionality for critical regions:

• It must be possible for a task to wait if a given condition
is satisfied.

• There must be a mechanism for activation of a waiting
task, so that a task can re-evaluate a condition, in order
to determine if it is allowed to enter its critical region.



Lecture - 3 -
Task synchro-

nization

Computer
Engineering

and Real-time
Systems

Condition variables

• Can be used, together with mutexes, for implementing
conditional critical regions.

• Three operations: one operation for initialisation, and two
operations denoted Await and Cause.

• A condition variable is associated with a mutex.


