
Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Lecture - 8 - Linux (not given as a separate
lecture during 2014)

TSEA81

Computer Engineering and Real-time Systems

Linköping University
Sweden



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

This document is released - 2013-12-16 - first version
(new homepage)

Author - Ola Dahl



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Linux

• An operating system kernel

• An operating system

• A distribution, containing operating system, file system(s),
many applications, tools, graphics, communication

• An embedded operating system, used in communication
systems, and in industrial systems

• A Unix-like system, using GNU software and licensing, and
open source development model



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Linux kernel

• Monolithic

• Loadable kernel modules

• Preemptive multitasking

• Memory management (virtual memory, multiple address
spaces)

• Threading



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

First announcement

Announced August 26, 1991, by Linus Torvalds

• ”Hello everybody out there using minix - I’m doing a
(free) operating system (just a hobby, won’t be big and
professional like gnu) for 386(486) AT clones. This has
been brewing since april, and is starting to get ready”



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Timeline

• 1991 - first announcement

• 1992 - Linux 0.12 - released under GPL

• 1994 - Linux 1.0

• 1994 - first attempt to an ARM port

• 1995 - Linux 1.2 - supporting Alpha, Sparc, and MIPS

• 1999 - Linuxdevices.com founded

• 2001 - Linux 2.4

• 2003 - Linux 2.6

• 2011 - Linux 3.0

• 2012 - Linux 3.6.8



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Timeline - others

• 1970 - Unix

• 1969-1973 - C

• 1976 - first version of EMACS (Editor MACroS for the
TECO editor)

• 1984 - Apple Macintosh

• 1985 - Intel 80386

• 1985 - GNU Manifesto

• 1985 - Windows 1.0

• 1992 - Windows 3.1 (protected mode but single address
space)

• 2002 - Announcement of release of Hurd

• 2012 - ”The GNU Hurd is under active development.
Because of that, there is no stable version”



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Number of lines of C-code, using

wc -l ‘find . -name "*.c"‘

• Linux 3.1.12.1 - 13107295

• Linux 1.0 - 141361

• FreeRTOS (includes TCP/IP, demos, etc.) - 788751

• MicroC/OS-III - RTOS core, 14310

• Simple OS - 2822



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

File system structure

UNIX file system structure, contains e.g.

• /bin - commands, e.g. cat, ls

• /sbin - system-oriented commands, e.g. insmod

• /boot - boot loader files

• /etc - configuration files

• /home - user directories

• /edu - student directories

• /usr/bin - more commands, e.g. ssh, which

• /usr/include - standard include files

• /var - files that change during run-time



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Programming

• C-programming (of course)

• Many other languages

• Process programming, e.g. process communication,
sockets, pipes, shared memory

• Example book -
http://www.advancedlinuxprogramming.com/



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Libraries and system calls

• A system call is an activation of a service in the operating
system

• A system call changes the processor mode, from user
mode to a privileged mode. This mode is often referred to
as kernel mode

• A system call can be implemented using a special
processor instruction (e.g. software interrupt)

• A library is a set of routines used by a program



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Libraries and system calls

A program executes in user mode. A program may

• Call a library function, e.g. printf

• The function printf may issue a system call, e.g. write(),
which then constitutes the entry point to the operating
system

• UNIX/Linux man pages list system calls in section 2 and
library functions in section 3 (and general commands in
section 1)

A program executing in user mode uses addresses assigned to
it. These addresses are referreed to as user space. The
corresponding addresses when executing in kernel mode are
referred to as kernel space.



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Programs and processes

• Process - an instance of a program in execution

• Parent and child relation

• Threads - execution flows inside a process

Linux schedules tasks, that may share resources, e.g. address
space.

• Threads are implemented as tasks that share address space

• Processes have separate address spaces

• During task creation, it can be decided which resources to
share

Tasks are managed (created, scheduled, and killed) by the
Linux kernel.



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Device drivers

• Device drivers are used for communication with devices

• Device drives also communicate with programs

• Device drivers execute in kernel mode, using addresses in
kernel space

• Device drivers can implement system calls, e.g. read,
write, and ioctl

• Device drivers can manage interrupt handlers

• Comprehensive book about Linux device drivers:
http://lwn.net/Kernel/LDD3/



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Process start and termination

• Process 0 - the idle process (a kernel thread)

• Process 1 - the init program

• Process creation using clone and fork system calls

• Process termination using exit system call



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Process switch

• Saving and restoring hardware context

• Registers are saved on the kernel mode stack of each
process, and in its process descriptor

• A process descriptor (the task struct struct in the kernel),
includes process state, process id (pid), reference to the
kernel mode stack, and much more

• Process descriptors can be stored in linked lists

• A process switch also involves memory management, since
address spaces need to be changed - page tables for the
new process need to replace page tables for the old process

Process descriptor link:
http://lxr.linux.no/linux+v3.6.6/include/linux/sched.h#L1234



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Scheduling in Linux

• Processes are preemptable - a process may be preempted
as a consequence of an interrupt, or when its time
quantum has expired

• Also the Linux kernel is preemptable

• Processes are scheduled according to a scheduling policy

• There are two real-time scheduling policies - called
SCHED FIFO (similar to priority-based RTOS-scheduling)
and SHED RR which is SCHED FIFO with time-slicing

• There is one normal scheduling policy, called
SHED NORMAL which is the time sharing CFS method



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Scheduling in Linux

• The real-time scheduling policies use static priorities
(assigned in a dedicated real-time priority range)

• Static priority and scheduling policy can be modified using
system calls, e.g. nice() for changing the static priority,
and sched setscheduler() for changing scheduling policy



Lecture - 8 -
Linux (not
given as a
separate

lecture during
2014)

Computer
Engineering

and Real-time
Systems

Real-time Linux

Variants of Linux, adapted for better real-time properties

• Linux 2.6 - CONFIG PREEMPT configuration option
allows process to be preempted even if they are executing
a system call

• Linux 2.6 series - O(1) scheduler - can perform scheduling
in constant time, and CFS scheduler - improved
responsiveness for interactive tasks

• CONFIG PREEMPT RT patch -
https://rt.wiki.kernel.org/ - allows nearly all of the kernel
to be preempted

• Thin kernel approach - run Linux as a low priority task in a
thin kernel, which runs directly on the hardware (as an
RTOS) - examples are RTLinux, RTAI, Xenomai


