
Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Lecture - 7 - Embedded systems (2013
version, not really a part of the 2014 course)

TSEA81

Computer Engineering and Real-time Systems

Linköping University
Sweden



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

This document is released - 2013-12-16 - first version
(new homepage)

Author - Ola Dahl



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Embedded systems

How to make an RTOS run on a Beagleboard

• Hardware - processor, board, peripherals

• Hello world on bare metal - a simple program, without
RTOS

• Task start and task switch - thinking in terms of
subroutines

• Interrupts and its implications on mechanisms for task
switch

• Task switch using software interrupt, and task switch from
interrupt



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Hardware

• Beagleboard

• ARM Cortex-A8

• OMAP DM3730 Multimedia processor

• Host computer - Linux



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

ARM registers

ARM has 13 32-bit registers, r0 to r12. Three 32-bit registers
r13 -r15, that have special use, since

• r13 is sp - the stack pointer

• r14 is lr - the link register

• r15 is pc - the program counter

ARM also has the processor status register cpsr, and the saved
processor status register spsr



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Processor modes

An ARM processor can execute in different modes.

• User mode

• Privileged modes - e.g. supervisor, IRQ, FIQ

• Some registers have individual copies per mode, e.g. sp
(r13) and lr (r14)

We use supervisor mode, and temporarily also IRQ mode.



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

ARM instructions

Instructions used, are

• mov - copy data

• ldr - load

• str - store

• ldmfd - load multiple data

• stmfd - store multiple data

• add - addition

• sub - subtract

• bl - branch and link



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

ARM instructions

Instructions used, are

• svc - supervisor call

• msr - move to special register

• mrs - move to register from special register

• srsdb - store return state (lr and spsr) of the current
mode to a stack of a specified mode

• cps - change processor mode



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

ARM exceptions

• Exceptions - interrupts, supervisor call, undefined
instruction, memory system abort, etc.

• Exception vectors stored in memory

• An exception makes the processor branch to an exception
vector address

• Exception vectors at specified locations

• Exception vector offsets, e.g. 0x18 for IRQ and 0x08 for
supervisor call (SVC)

• Exception base adress is default 0x0, but can be changed.



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

ARM exceptions

When an exception is entered

• the processor status register cpsr is saved in the SPSR for
the exception mode that is handling the exception

Upon exit from an exception

• the program counter and the cpsr need to be restored, to
enable correct execution at the point where the exception
occurred.

Exit from exception can be done using different instructions,
e.g. ldmfd, with a ^ appended.



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Device communication

Where are the peripherals?

• Look for memory map in documentation

• TIMER 1 has its base address at 0x48318000

• UART 3 has its base address at 0x49020000

Timer and UART, enables clock interrupts and serial
communication to host.



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Mixing C and assembly

Calling assembly from C

• Compiler prepares parameter passing and return values

• ARM - parameters in registers and return value in register
(mostly)

• Intel - parameters on stack and return value in register
(mostly)

• Investigate using -S switch to (arm-) gcc.

Calling C from assembly

• Assembly prepares parameter passing and takes care of
return values



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Hello world on bare metal

How can we make a minimal C-program?

• Compiling and linking

• File format

• Load to target

• Startup - who is calling main?



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

A linker script defines the memory layout

ENTRY(start)

SECTIONS

{

. = 0x80000000;

.startup . : { obj/startup_arm_bb.o(.text) }

.text : { *(.text) }

.data : { *(.data) }

.bss : { *(.bss) }

. = . + 0x5000;

stack_bottom = .;

}

Use -T switch to gcc.



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Startup code (in assembly) calls main

.global start

start:

ldr sp, =stack_bottom

bl main

b .

In a larger system, startup code does a lot more (e.g. initialising
data, copying from flash to RAM, sets up hardware etc.)



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Hello world minimum version, can run without an OS,

#include "console.h"

int main(void)

{

console_put_string("A bare metal C-program!\n");

return 0;

}



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Task start - thinking in subroutines

Use instructions also used when programming with subroutines

• ARM - subroutine call with return adress in lr, subroutine
return by copying lr to pc

• Intel - subroutine call with return adress on stack,
subroutine return by popping stack into pc



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

The function context restore shall start a task. Its C-prototype
is

/* context_restore: starts task with current

stack pointer new_stack_pointer */

void context_restore(mem_address new_stack_pointer);



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

ARM implementation of context restore (first attempt)

context_restore:

@ copy parameter value to sp

mov sp, r0

@ restore registers from stack

ldmfd sp!, {r0-r12, r14}

@ restore pc

ldmfd sp!, {pc}



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Task switch - thinking in
subroutines

Use instructions as when working with subroutines

• Save program counter as done in subroutine call

• Restore program counter as done in subroutine return



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

The function context switch shall perform a task switch. Its
C-prototype is

/* context_switch: performs a task switch, by

saving registers, and storing the saved value

of the stack pointer in old_stack_pointer,

and then restoring registers from the stack

addressed by new_stack_pointer */

void context_switch(mem_address *old_stack_pointer,

mem_address new_stack_pointer);



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

ARM implementation of context switch (first attempt)

context_switch:

@ save link register

stmfd sp!, {lr}

@ save registers

stmfd sp!, {r0-r12, r14}

@ copy sp to address referred to by

@ first parameter

str sp, [r0]

@ switch stack, copying new stack

@ pointer in second parameter to sp

mov sp, r1

@ restore registers

ldmfd sp!, {r0-r12, r14}

@ restore pc

ldmfd sp!, {pc}



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

The function context switch is called from a function called
task switch, as

context_switch(&task_1_sp, task_2_sp);



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Using interrupts

• Interrupt initialisation

• Interrupt handler

• C and assembly

• Enable and disable interrupts

How to make a minimum program using interrupts?



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Make exception vector adress contain a jump instruction, as

int_vector:

ldr pc, [pc, #24]



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Create setup routine in assembly, as

setup_int_handler:

ldr r0, =0x4020FFDC

ldr r1, =int_vector

ldr r2, [r1]

str r2, [r0]

ldr r0, =0x4020FFFC

ldr r1, =int_handler

str r1, [r0]

mov pc, lr



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Actual interrupt handler (part one)

int_handler:

@ adjust lr (needed in IRQ)

sub lr,lr,#4

@ store lr and spsr on supervisor mode stack

srsdb #MODE_SUPERVISOR!

@ change mode to supervisor mode

cps #MODE_SUPERVISOR

@ save registers

stmfd sp!, {r0-r12}

@ clear interrupt (timer)

ldr r0, =0x48318018

ldr r1, =0x00000011

str r1, [r0]

ldr r0, =0x48318018

ldr r1, [r0]



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Actual interrupt handler (part two)

@ call handler

bl int_handler_function

@ acknowledge interrupt

ldr r3,=0x48200048

mov r1,#1

str r1,[r3]

@ restore registers

ldmfd sp!, {r0-r12}

@ restore lr

ldmfd sp!, {lr}

@ adjust sp

add sp, sp, #4

@ restore pc, and restore cpsr from spsr

movs pc, lr



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

The hello world with interrupts C-program becomes

int main(void)

{

DISABLE_INTERRUPTS;

console_put_string("timer_interrupt\n");

tick_handler_init();

setup_int_handler();

enable_timer_interrupts();

ENABLE_INTERRUPTS;

return 0;

}



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Interrupts and task stack layout

• When an interrupt occurs, cpsr and pc are saved, by the
hardware

• Saved values of cpsr and pc must be restored when
execution shall be resumed

• If no context switch shall occur, then return from
interrupt can be used, since it restores the saved cpsr and
the saved pc

• If context switch shall occur, we need to ensure that the
saved values of cpsr and pc are saved on the stack of the
running task, i.e. the task that was interrupted. In
addition, corresponding values for these registers need to
be restored from the task that shall be resumed.



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

A modified stack layout

• Our initial attempt, using ”thinking in subroutines”, used
a stack layout with pc and registers saved.

• Interrupt handling needs a stack layout where also cpsr is
stored.

• Change stack layout, in all places, so that all tasks not
running have the same layout of the data stored on their
stacks

• This affects also task creation, and task start, since the
stack must be prepared in the correct way



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Task start using return from
interrupt

Use instructions also used when returning from interrupt when
starting a task (instead of return from subroutine)



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

The implementation of context restore changes to (parts are
shown)

context_restore:

@ copy parameter value to sp

mov sp, r0

@ restore registers from stack

ldmfd sp!, {r0-r12, r14}

@ ...

@ load r0 with cpsr for task

ldr r0, [sp, #4]

@ store r0 value in spsr

msr spsr, r0

@ ...

@ restore pc, and restore cpsr from spsr

ldmfd sp!, {pc}^



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Task switch using software
interrupt

• A software interrupt (SVC) saves cpsr and pc, in a similar
way as is done when an interrupt occurs (since both are
exceptions)

• Therefore, use SVC instead of a subroutine call to initiate
a task switch

• This holds for task switches initiated from tasks



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

First, create a subroutine, that does the SVC, as

context_switch_swi:

@ save lr on stack

stmfd sp!, {lr}

@ do the software interrupt

svc 0x10

@ restore lr

ldmfd sp!, {lr}

@ return to caller

bx lr



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Then, implement the exception handler, i.e. the function that
does the context switch, as (parts shown)

context_switch:

@ ...

@ store spsr in r0

mrs r0, spsr

@ save r0 on stack

stmfd sp!, {r0}

@ ...

@ load r0 with cpsr for task

ldr r0, [sp, #4]

@ store r0 value in spsr

msr spsr, r0

@ ...

@ restore pc, and restore cpsr from spsr

ldmfd sp!, {pc}^



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Task switch from interrupt

• When an interrupt occurs, registers must be saved

• If these registers are saved on the stack of the running
task, parts of a context switch (if this is decided, during
the interrupt), is already done

• Context switch routine as before saves registers, so cannot
be used directly.

• Create new routine, context switch int, to be called when
a task switch initiated from interrupt shall occur.



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Task switch from interrupt

• The interrupt handler needs to save the stack pointer,
when it refers to the saved registers

• The saved stack pointer will be used by
context switch int, where it will be copied to the TCB of
the task to be suspended

• Then, the stack of the task to be resumed, will be located,
as is done during task switch initiated from a task, and
registers and program counter will be restored, from this
stack



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

The function context switch int shall perform a task switch
from interrupt. Its C-prototype is

/* context_switch_int: performs a task switch, from

interrupt, by storing a saved value of the stack

pointer in old_stack_pointer, and then restoring

registers from the stack addressed by

new_stack_pointer */

void context_switch_int(

mem_address *old_stack_pointer,

mem_address new_stack_pointer);

and it is implemented in assembly.



Lecture - 7 -
Embedded

systems (2013
version, not

really a part of
the 2014
course)

Computer
Engineering

and Real-time
Systems

Iterative RTOS development

• Hello world on bare metal

• Task start and task switch using return from subroutine

• Interrupts (Hello world with timing)

• Add saved processor status word to common stack layout

• Modify stack preparation - task start

• Start task using return from exception (return from
interrupt) - context restore

• Task-initiated context switch using Software interrupt
(SVC - supervisor call) and return from exception (return
from interrupt)

• Interrupt-initiated context switch taking into account that
registers already saved by interrupt handler - resume new
task as when doing task-initiated context switch


