8 - Linux (not given as a separate lecture during
2014)

TSEAS81 - Computer Engineering and Real-time Systems

This document is released - 2013-12-16 - first version (new homepage)

Author - Ola Dahl
Lecture - 8 - Linux (not given as a separate lecture during 2014)

This Lecture gives an overview of Linux. Note that for 2014, this
lecture was not given. The most important parts of the lecture (e.g.
information about pthreads) were given during many lectures. Its
main sources of inspiration has been the books Understanding the
Linux Kernel®, which is also available at the LiU Library?, and Linux
Kernel Development (3rd Edition)3.

For additional information regarding the history and the open
source aspects of Linux, see e.g. Just For Fun* by Linus Torvalds,
or Rebel Code: Linux And The Open Source Revolution® by Glyn
Moody.

Additional references are found inside the text.

Background

According to Wikipedia®, Linux is a Unix-like operating system. It
is named after its inventor, Linus Torvalds’, who created the Linux
kernel®.

The word Linux can also mean an operating system distribution,
containing an operating system, file system(s), many applications,
tools, and software for graphics and communication. Examples are
Ubuntu and Angstrom?.

Linux is used in personal computers and in servers, but also in
embedded systems, then often referred to as Embedded Linux'®, e.g.
in communication systems and in industrial systems.

The Linux Kernel is licensed using a GNU'" license.

The Linux kernel is a monolithic operating system kernel. It al-
lows loadable kernel modules, it provides preemptive multitasking of
processes (and threads), and it has memory management for virtual
memory with multiple address spaces.

Linux was first announced on August 26, 1991, by Linus Torvalds,
in a newsgroup message’* with the text

e "Hello everybody out there using minix - I'm doing a (free) operat-
ing system (just a hobby, won't be big and professional like gnu) for
386(486) AT clones. This has been brewing since april, and is starting to
get ready”

“http://www.amazon.com/
Understanding-Linux-Kernel-Third-Daniel/
dp/0596005652
>http://www.bibl.liu.se/?1=en
Shttp://www.amazon.com/
Linux-Kernel-Development-Robert-Love/
dp/0672329468/

4http://www.bokus.
com/bok/9789150100235/
just-for-fun-mannen-bakom-linux/
Shttp://www.amazon.com/

Rebel- Code- Linux-Source-Revolution/
dp/0738206709

®http://en.wikipedia.org/wiki/Linux

7http://en.wikipedia.org/wiki/
Linus_Torvalds
8http://en.wikipedia.org/wiki/
Linux_kernel

9http://www.angstrom-distribution.
org/

http://elinux.org/Main_Page

" http://www.gnu.org/

2 https://groups.google.com/forum/
?fromgroups=#!msg/comp.os.minix/
dINtH7RRrGA/SwRavCzVE7g]

http://www.amazon.com/Understanding-Linux-Kernel-Third-Daniel/dp/0596005652
http://www.amazon.com/Understanding-Linux-Kernel-Third-Daniel/dp/0596005652
http://www.amazon.com/Understanding-Linux-Kernel-Third-Daniel/dp/0596005652
http://www.bibl.liu.se/?l=en
http://www.amazon.com/Linux-Kernel-Development-Robert-Love/dp/0672329468/
http://www.amazon.com/Linux-Kernel-Development-Robert-Love/dp/0672329468/
http://www.amazon.com/Linux-Kernel-Development-Robert-Love/dp/0672329468/
http://www.bokus.com/bok/9789150100235/just-for-fun-mannen-bakom-linux/
http://www.bokus.com/bok/9789150100235/just-for-fun-mannen-bakom-linux/
http://www.bokus.com/bok/9789150100235/just-for-fun-mannen-bakom-linux/
http://www.amazon.com/Rebel-Code-Linux-Source-Revolution/dp/0738206709
http://www.amazon.com/Rebel-Code-Linux-Source-Revolution/dp/0738206709
http://www.amazon.com/Rebel-Code-Linux-Source-Revolution/dp/0738206709
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Linux_kernel
http://www.angstrom-distribution.org/
http://www.angstrom-distribution.org/
http://elinux.org/Main_Page
http://www.gnu.org/
https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ

8 - LINUX (NOT GIVEN AS A SEPARATE LECTURE DURING 2014) 2

In 1994, Linux 1.0 was released’3. The current stable version of Bhttp://en.wikipedia.org/wiki/
Linux'4 is 3.6.9. SOy Al it org/
The source code of the Linux kernel can be downloaded from The
Linux Kernel Archives?5. 5http://kernel.org/
The Linux kernel can be used together with GNU software, as is
done when creating Linux distributions. The resulting system may
be called a GNU/Linux operating system. This is in contrast to a pure
GNU operating systemlé, which instead would have used the GNU 6 http://www.gnu.org/

Kernel, which is called Hurd'7. 7 http://www.gnu.org/software/hurd/
hurd.html

B http://en.wikipedia.org/wiki/C_
%28programming_language%29

The Linux Kernel is implemented mostly in C*8.

Usage and programming

The Linux file system structure' is hierarchical. It is organized in Y http://www.tldp.org/LDP/
intro- linux/html/sect_03_01.html

. *http://www.pathname.com/fhs/pub/
directory name /, one often finds a recognizable set of directories, fhs-2.3.html

a standardized way>°. Starting from the root level, which has the

such as

* /bin - containing programs implementing commands, to be exe-
cuted by system administrators and users. Example commands are
Is, pwd, and cat.

® /sbin - with programs implementing system-oriented commands,
e.g. insmod

e /boot - with boot loader files, e.g. files related a boot loader called
GRUB?2L. *"http://www.gnu.org/software/grub/

e /Jetc - with configuration files, e.g. configuration files for X11, and
the file /etc/passwd, with information required during login.

e /home - with user directories
e /edu - with student directories

® /usr/bin with programs implementing commands. Example com-
mands could be ssh and which.

e Jusr/include - with standard include files, e.g. the file stdio.h

® /var - files that change during run-time

Linux supports programming in a variety of languages, such as C,
Python, Perl, C++, and Java.

When developing software using Linux it may be of interest to use
features that are commonly found in Unix-related operating systems.
It is e.g. possible to create programs which utilize features for process
programming, such as process communication and process synchro-
nization, using mechanisms like sockets, pipes, or shared memory.

http://en.wikipedia.org/wiki/History_of_Linux
http://en.wikipedia.org/wiki/History_of_Linux
http://kernel.org/
http://kernel.org/
http://www.gnu.org/
http://www.gnu.org/software/hurd/hurd.html
http://www.gnu.org/software/hurd/hurd.html
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://www.tldp.org/LDP/intro-linux/html/sect_03_01.html
http://www.tldp.org/LDP/intro-linux/html/sect_03_01.html
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://www.gnu.org/software/grub/

8 - LINUX (NOT GIVEN AS A SEPARATE LECTURE DURING 2014)

Information about programming in Linux can e.g. be found in the
book Advanced Linux Programming?2. 2 http://www.
Information about usage of Linux, including information about advancedlinuxprogramning. con/
commands, shell scripting, and system administration tasks, can be

found in an on-line book called LINUX: Rute User’s Tutorial and

Exposition?3. “ http://rute.2038bug. com/index.
A program in Linux can request a service from the Linux kernel. html.gz
This is done using a system call*+. 24 http://en.wikipedia.org/wiki/

A system call changes the processor mode, from user mode to a System-catl

privileged mode. This mode is often referred to as kernel mode.

A system call can be implemented using a special processor in-
struction (e.g. software interrupt).

A library is a set of routines used by a program. A program, exe-
cuting in user mode, may call a library function, e.g. printf. The func-
tion printf may issue a system call, e.g. write(), which then constitutes
the entry point to the operating system.

The Linux man pages®> are organized in different sections. There S http://linux.die.net/man/
are 8 sections. General commands are given in section 1, system calls
are given in section 2, and library functions are given in section 3. As
an example, one might try, in a Linux shell, to give the commands
man printf and man 3 printf, or the commands man write and man 2
write.

A program executing in user mode uses addresses assigned to
it. These addresses are referreed to as user space. The corresponding
addresses when executing in kernel mode are referred to as kernel
space.

A process is an instance of a program in execution. Processes in
Linux have a parent-child-relationship.

Linux provides multiple address spaces. This means that, in most
cases, each process has its own address space. As a consequence, one
process cannot directly refer to an address used in another process,
e.g. by using a pointer, and there can be no variables which are
shared by two processes. By the use of virtual memory this means
that one virtual address, e.g. ox1000, correspond to different physical
addresses when used in different processes.

The word thread is used to denote a process which shares its ad-
dress space with another process. When two threads sharing a com-
mon address space use a specific virtual address, these references
correspond to the same physical address. Threads can therefore share
variables, and they can access each other’s memory using pointers.

Tasks in a real-time operating system, such as Simple_OS or FreeR-
TOS, often have a common address space.

In Linux, the word task is used to refer to an executing entity,
which can be either a process with its own address space, or a thread

3

http://www.advancedlinuxprogramming.com/
http://www.advancedlinuxprogramming.com/
http://rute.2038bug.com/index.html.gz
http://rute.2038bug.com/index.html.gz
http://en.wikipedia.org/wiki/System_call
http://en.wikipedia.org/wiki/System_call
http://linux.die.net/man/

8 - LINUX (NOT GIVEN AS A SEPARATE LECTURE DURING 2014) 4

sharing its address space with one or more other threads.

The Linux scheduler?® schedules tasks. Each task is described by
a data structure®”. When a task is created, using the clone system
call?8, it is decided if it shall share address space with other tasks or
not. It is also decided if it shall share other resources.

A device driver® is a piece of software responsible for creating
an interface between a hardware unit and a user program. A device
driver performs communication with the hardware as well as with a
user program. Linux device drivers often execute in kernel mode (us-
ing addresses in kernel space), and their interfaces to user programs
can sometimes be implemented using system calls such as read, write,
and ioctl.

Linux device drivers can contain interrupt handlers, e.g. an inter-
rupt handler for a keyboard3° can be implemented as part of a device
driver.

A comprehensive treatment of device drivers in Linux is given in
the book Linux Device Drivers, Third Edition3?.

Processes and threads

The Linux processes are identified using a process identity. The first
process created, during startup, has the number o. This is the idle
process, which is a process internal to the kernel (referred to as a
kernel thread). The process with number 1 is a user space program,
referred to as the init program. All other processes are descendants of
this process.

As mentioned above, processes, or more correctly - tasks, can be
created using the clone3? system call. A process can also be created
using the fork33 system call.

A process can be terminated using the _exit34 system call, which
may be invoked from the exit3> C library function.

A Linux process switch3® involves, as is the case for an RTOS,
saving and restoring of hardware context. Registers are saved on the
kernel mode stack of each process, and in its process descriptor.

A process descriptor (the task_struct3” struct in the kernel), in-
cludes e.g. process state, process id (pid), reference to the kernel
mode stack, and much more. Process descriptors can be stored in
linked lists.

A process switch also involves memory management, since address
spaces need to be changed - page tables for the new process need to
replace page tables for the old process.

Linux processes are preemptible. This means that a processes can
be suspended, not only voluntarily as is the case when performing a
system call, but also involuntarily, e.g. as a consequence of an inter-

% http://www.ibm.com/
developerworks/linux/library/
1-completely-fair-scheduler
*7http://lxr.linux.no/linux+v3.6.6/
include/linux/sched.h#L1234

B http://linux.die.net/man/2/clone
* http://www.linuxforu.com/tag/
linux-device-drivers-series/page/
2/

°http://www.ts.mah.se/utbild/
dal35a/laborationer/1lab6/lab6_
dal35a.html

3 http://lwn.net/Kernel/LDD3/

32 http://linux.die.net/man/2/clone
33 http://linux.die.net/man/2/fork
3*http://linux.die.net/man/2/exit
35http://linux.die.net/man/3/exit

3 http://www.makelinux.net/books/
ulk3/understandlk- CHP-3-SECT-3

37 http://1xr.linux.no/linux+v3.6.6/
include/linux/sched.h#L1234

http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler
http://lxr.linux.no/linux+v3.6.6/include/linux/sched.h#L1234
http://lxr.linux.no/linux+v3.6.6/include/linux/sched.h#L1234
http://linux.die.net/man/2/clone
http://www.linuxforu.com/tag/linux-device-drivers-series/page/2/
http://www.linuxforu.com/tag/linux-device-drivers-series/page/2/
http://www.linuxforu.com/tag/linux-device-drivers-series/page/2/
http://www.ts.mah.se/utbild/da135a/laborationer/lab6/lab6_da135a.html
http://www.ts.mah.se/utbild/da135a/laborationer/lab6/lab6_da135a.html
http://www.ts.mah.se/utbild/da135a/laborationer/lab6/lab6_da135a.html
http://lwn.net/Kernel/LDD3/
http://linux.die.net/man/2/clone
http://linux.die.net/man/2/fork
http://linux.die.net/man/2/exit
http://linux.die.net/man/3/exit
http://www.makelinux.net/books/ulk3/understandlk-CHP-3-SECT-3
http://www.makelinux.net/books/ulk3/understandlk-CHP-3-SECT-3
http://lxr.linux.no/linux+v3.6.6/include/linux/sched.h#L1234
http://lxr.linux.no/linux+v3.6.6/include/linux/sched.h#L1234

8 - LINUX (NOT GIVEN AS A SEPARATE LECTURE DURING 2014)

rupt, or when its time quantum has expired.

Also the Linux kernel is preemptible3®. This means that a process
switch can take place during execution inside the kernel, e.g. during
execution of a system call.

Linux processes are scheduled according to a scheduling policy,
defined by a scheduling class39. There are two real-time schedul-
ing classes - called SCHED_FIFO (similar to priority-based RTOS-
scheduling) and SHED_RR which is SCHED_FIFO with time-slicing.

There is one normal scheduling class, called SHED_NORMAL
which is the time sharing CFS method4°.

The real-time scheduling classes use static priorities, assigned
in a dedicated real-time priority range. The static priority and the
scheduling policy can be modified using system calls, e.g. nice*' for
changing the static priority, and sched_setscheduler#* for changing
scheduling policy.

Real-time Linux

There are variants of Linux which are adapted for better real-time
properties. Sometimes these variants are referred to as different ways
of obtaining a Real-time Linux43.

The Linux 2.6 kernel has a CONFIG_PREEMPT configuration op-
tion which allows process to be preempted even if they are executing
a system call.

The Linux 2.6 series has the O(1) scheduler, which can perform
scheduling in constant time, and the CFS scheduler, which gives
improved responsiveness for interactive tasks.

In addition, there is the CONFIG_PREEMPT_RT44 patch, which
allows nearly all of the kernel to be preempted.

Another method for adding real-time capabilities to Linux can be
described as a thin-kernel approach, where Linux is executed as a low-
priority task in a thin kernel which runs directly on the hardware (as
an RTOS). Some examples of this approach are RTLinux, RTAI4>, and
Xenomai4®.

For additional information about real-time aspects of Linux, see
e.g. this article about real-time in Linux#7.

Programming with Pthreads

POSIX threads, also referred to as Pthreads, are available in Linux,
and also in other flavors of UNIX. Information about programming
with Pthreads can be found e.g. in a tutorial from Lawrence Liver-
more National Laboratory48, and in a tutorial from YoLinux49.
Pthreads are used in the course in Lab 2 - Embedded Linux. Below

®http://www.linuxjournal.com/
article/5600

3 http://www.ibm.com/
developerworks/linux/library/
1-completely-fair-scheduler/
#domains

“http://www.ibm.com/
developerworks/linux/library/
1-completely-fair-scheduler

“http://linux.die.net/man/2/nice

#http://linux.die.net/man/2/sched_
setscheduler

Bhttp://www.
realtimelinuxfoundation.org/events/
rtlws-2012/ws.html

#https://rt.wiki.kernel.org/

S https://www.rtai.org/

4 http://www.xenomai.org/

7 http://www.ibm.com/
developerworks/library/
1-real-time-linux/index.html

https://computing.llnl.gov/
tutorials/pthreads/
“http://www.yolinux.com/TUTORIALS/
LinuxTutorialPosixThreads.html

http://www.linuxjournal.com/article/5600
http://www.linuxjournal.com/article/5600
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/#domains
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/#domains
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/#domains
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/#domains
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler
http://linux.die.net/man/2/nice
http://linux.die.net/man/2/sched_setscheduler
http://linux.die.net/man/2/sched_setscheduler
http://www.realtimelinuxfoundation.org/events/rtlws-2012/ws.html
http://www.realtimelinuxfoundation.org/events/rtlws-2012/ws.html
http://www.realtimelinuxfoundation.org/events/rtlws-2012/ws.html
https://rt.wiki.kernel.org/
https://www.rtai.org/
http://www.xenomai.org/
http://www.ibm.com/developerworks/library/l-real-time-linux/index.html
http://www.ibm.com/developerworks/library/l-real-time-linux/index.html
http://www.ibm.com/developerworks/library/l-real-time-linux/index.html
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

8 - LINUX (NOT GIVEN AS A SEPARATE LECTURE DURING 2014)

follows a description on how pthreads can be used, with application
in Lab 2.

Compilation and linking

A program using pthreads should use an include directive of the
form

/* pthread include x/
#include <pthread.h>

It should be linked using the linker switch -Ipthread. In Lab 2, it
should be compiled using the compiler switch -DPTHREADS.

Thread definition

A thread is defined by a thread handle. An example, for one thread, is
given by

/* handle for lift task */

pthread_t Lift_Handle;

Thread handles can also be defined for an indexed set of threads, as

/* handles for passenger tasks */
pthread_t Passenger_Handle[MAX_N_PERSONS];

A function to be used as thread is defined as

/* lift_thread: moves the lift =/
void x1lift_thread(void *thread_param)

A parameter value can be transferred to a thread when a thread is
created. In the thread code, the parameter value can be received by
declaring and assigning a variable, as

/* passenger id x/
int id;

/* receive id x/
int *id_ref = (int *) thread_param;
id = xid_ref;

Thread creation
Threads can be created, e.g. from the main function of a program, as

/* create lift thread */
pthread_create(&Lift_Handle, NULL, lift_thread, NULL);
/* create user thread */
pthread_create(&User_Handle, NULL, user_thread, NULL);

8 - LINUX (NOT GIVEN AS A SEPARATE LECTURE DURING 2014)

A thread can also be created from another thread. This is practised
in Lab 2, where threads for the lift passengers can be created as

/* create passenger thread =/
pthread_create(&Passenger_Handle[id], NULL, &passenger_thread,
(void *) &Passenger_Ids[Passenger_Id_Index]);

Wait for a specified amount of time

A thread can be forced to wait a specified amount of time. This can
be accomplished using the function sleep or the function usleep, which
are available after including unistd.h as

/% unistd is needed for usleep and sleep */
#include <unistd.h>

A specified waiting time can then be requested, e.g. after a lift travel
is finished, using code such as

/* make the journey x/
lift_travel(Lift, id, from_floor, to_floor);

/* sleep for a while */
usleep(5000000);
Mutual Exclusion

Mutual exclusion can be implemented using binary semaphores, also
referred to as mutexes. A mutex can be declared as

/* mutex for mutual exclusion x*/
pthread_mutex_t mutex;

A mutex can be initialised as

/* initialise mutex x/
pthread_mutex_init(&lift->mutex, NULL);

A resource can then be reserved, using a Wait-operation, as

/* reserve lift =/
pthread_mutex_lock(&lift->mutex);

and released, using a Signal-operation as

/* release lift =/
pthread_mutex_unlock(&lift->mutex);

8 - LINUX (NOT GIVEN AS A SEPARATE LECTURE DURING 2014) 8

Condition variables
A condition variable can be declared as

/* condition variable, to indicate that something has happend */
pthread_cond_t change;

It can be initialised as

/* initialise condition variable */
pthread_cond_init(&lift->change, NULL);

An Await-operation can be performed as
pthread_cond_wait (&lift->change, &lift->mutex);
A Cause-operation can be done, as

/* indicate to other tasks that the lift has arrived x/
pthread_cond_broadcast(&lift->change);

