
Solution proposal for the 2011-08-23 TSEA26 exam

(v1.4)

Question 1

Z

C1

0

1

0

1
0

1

IMM[13:0]

0x800

RST

PC1

C2

0

1

2

1

TO_PM[13:0]

Note: All signals in the schematic above are 14 bits (except for control signals to
multiplexers).

Operation C1 C2
OP1 2 1
OP2 1 1
OP3 0 1

Comment: This isn’t a very realistic PFC as there is no “NOP” operation which
simply increments the program counter. The schematic above supports this operation
by setting C1 and C2 to zero, but no points will be deducted if your solution can’t
handle such an operation. (However, your PFC still needs to be able to increment the
program counter in case a conditional branch is not taken!)

1

Question 2

This is a solution proposal for Q2 for constraint alternative 1 (worth 5 points).

SIGNEXT

0 1

SIGNEXT

0 1 2

OpB

0

C2C1

OpA DM0

0 1 0 1

DM0

OpA0

C3

C4

0 1 0 1

OpA
0 1

0

1

TMPRES[16:0]

TMPRES[16]

TMP2RES[16:0]

SIGNEXT

SIGNEXT

0

C5

01

DM0 DM0OpB

TMPRES[16]

TMP2RES[16]

0 1 2

BITREV

OpA

SATURATION

1

C6

C7

1717

17

17

17

17

17

16

16
16 16

16

16
16

RESULT

SIGNEXT: out[16:0] = {in[15], in[15:0]};

BITREV: out[15:0] = in[0:15];

SATURATION:

if (in[16] != in[15]) begin

if(in[16]) out = 16’h8000;

else out = 16’h7fff;

end else begin

out = in[15:0];

end

2

Operation C1 C2 C3 C4 C5 C6 C7
OP1: OpA+OpB 0 0 0 - 0 0 2
OP2: OpA-OpB 0 1 1 - 0 0 2
OP3: SAT(OpA-OpB) 0 1 1 - 0 1 2
OP4: SAT(ABS(OpA)) 0 2 0 0 1 1 2
OP5: SAT(ABS(OpA-OpB)) 0 1 1 0 1 1 2
OP6: BITREV(OpA) - - - - - - 1
OP7: LD.MINMAX 1 1 1 1 - - 0

saturate_values:

move ar0,r0

; If you don’t have any dependency checking and register bypass

; logic in your pipeline you may have to unroll this loop.

repeat 160,endloop

ld.minmax r3,DM0[ar0],r2,r1 ; r3 = max(min(r1,DM0[]),r2)

st DM0[ar1++],r3

endloop:

ret

The difficult (9p) version of part b can be solved by doubling the width of the memory
so that 32 bits can be read out at the same time. Note that doubling the width of the
memory can also be beneficial for other units, such as the MAC unit. However, it is not
something to undertake lightly, as a wider memory will consume more power and if you
don’t have any use for a double wide read most of the time you will waste quite a lot of
power.

• ld.double.minmax DM0[ar0],r2,r1 ; TEMPVAL = DM0[15:0];
TMP2 = max(min(r1,DM0[31:16]),r2);

• st.double.minmax DM0[ar0+=2],r2,r1 ; DM0[31:16] = TMP2;
DM0[15:0] = max(min(r1,TEMPVAL),r2); ar0+=2;

The assembly program which implements this routine looks like this:

saturate_values:

move ar0, r0

repeat 80, endloop

ld.double.minval DM0[ar0],r2,r1

st.double.minval DM0[ar0+=2],r2,r1

endloop:

ret

3

SIGNEXT

0 1

SIGNEXT

0 1 2

OpB

0

C2C1

OpA TMP

0 1 0 1

TMP

OpA0

C3

C4

0 1 0 1

OpA
0 1

0

1

TMPRES[16:0]

TMPRES[16]

TMP2RES[16:0]

SIGNEXT

SIGNEXT

0

C5

01

TMP TMPOpB

TMPRES[16]

TMP2RES[16]

0 1 2

BITREV

OpA

SATURATION

1

C6

C7

1717

17

17

17

17

17

16

16
16 16

16

16
16

RESULT

0 1

DM0[15:0]

0 1

TMP

DM0[31:16]

C8

C9

0

1 TMP2

TO_DM0[31:0] = { TMP2, RESULT}

C9

Operation C1 C2 C3 C4 C5 C6 C7 C8 C9
OP1-OP6: Same as before
LD.DOUBLE.MINMAX 1 1 1 1 - - 0 1 1
ST.DOUBLE.MINMAX 1 1 1 1 - - 0 0 0

Question 3

This exercise can be answered in many different ways. The following is a minimal
assembly language answer which is possible to implement in a reasonable hardware
efficient manner. However, it is somewhat unrealistic as it assumes that it is possible
to forward a result from the load unit directly to the next instruction (which uses the
MAC unit).

; The first key to making this exercise easier for a hardware

4

; designer is to recognize that there is no need to check flag

; in the middle of the loop.

;

; No points would be deducted for checking the flag in the hardware

; however, as long as it is done in a reasonable way. (E.g., you must

; show that the flag comes from OpA or OpB.)

do_filter:

move ar0,r0

move ar1,r1

cmp r3,0

clr ACR

jump.eq flag_is_zero

; It is not very realistic to use the result of the load immediately,

; in real life you would probably unroll this loop at least one time.

repeat 100, absloop_end

ld r4,DM0[ar0++]

mac.abs ACR, DM0[ar1++], r4

absloop_end

jump loop_end

flag_is_zero

repeat 100, loop_end

ld r4,DM0[ar0++]

mac ACR, DM0[ar1++], r4

loop_end:

mac.checkval r0,ACR ; Sets r0 to 1 if ABS(ACR) >= 0x80000000

cmp r0,0

jump.eq done

rshift4 ACR ; ACR = ACR >> 4

set r10, 1

st DM0[r2],r10

done:

sat ACR

move r0, HIGH(ACR)

ret

do_small_fir:

add r0,r0, 2

move ar0,r0

move ar1,r1

repeat 99, endloop

mul ACR, DM0[ar0-2], r2 ; ACR = oldval1 * tap1

mac ACR, DM0[ar0-1], r3 ; ACR += oldval2 * tap2

mac.sat r0, DM0[ar0++], r4 ; r0 = SATURATE(val * tap3 + ACR)

5

st DM0[ar1++], r0

endloop

ret

The above solution would be perfectly ok on the exam. However, the mac.checkval
instruction looks like a fairly ugly special case even though there is plenty of clock
cycles available for prologue/epilogue. Additionally, the do small fir function performs
many redundant reads from memory, increasing the power consumption significantly.
Therefore I propose the following solution:

do_filter:

move ar0,r0

move ar1,r1

cmp r3,0

jump.ne flag_is_zero

clr ACR ; Delay slot

; Unrolled four times to avoid possible data hazards

repeat 25, absloop_end

ld r4,DM0[ar0++]

ld r5,DM0[ar0++]

ld r6,DM0[ar0++]

ld r7,DM0[ar0++]

mac.abs ACR, DM0[ar1++], r4

mac.abs ACR, DM0[ar1++], r5

mac.abs ACR, DM0[ar1++], r6

mac.abs ACR, DM0[ar1++], r7

absloop_end

jump loop_end

nop ; Delay slot

flag_is_zero

repeat 25, loop_end

ld r4,DM0[ar0++]

ld r5,DM0[ar0++]

ld r6,DM0[ar0++]

ld r7,DM0[ar0++]

mac ACR, DM0[ar1++], r4

mac ACR, DM0[ar1++], r5

mac ACR, DM0[ar1++], r6

mac ACR, DM0[ar1++], r7

loop_end:

; The comparison is very similar to the one done when saturating a

; number. Unfortunately it is not quite as easy as we also need to

; check whether ACR == 0xff80000000.

6

move r4, GUARD(ACR)

cmp r4, 0 ; Check whether guard bits are all 0

jump.eq checkhigh

move r5, HIGH(ACR) ; Delay slot

cmp r4, -1

jump.ne doshift ; If guard bits are not all 1 here we

move r6, LSB(ACR); need to shift!

cmp r5, 0x8000 ; Check whether ACR[31:16] is larger

jump.ugt done ; than 0x8000. If so we are done.

nop

cmp r6,0 ; If r6 is zero we know that ACR is

jump.eq doshift ; equal to 0xff80000000 here.

nop

jump done

checkhigh:

cmp r5, 0

jump.pl done ; Jump if positive (i.e., less than 0x8000)

nop

doshift:

; Ok, at this point it is clear that ABS(ACR) > 0x80000000.

; Scale ACR down four steps and set a flag indicating that

; this was done. (This could allow the main program to for

; example scale down the input data from this point in order

; to implement some sort of block floating point.)

set r0,1

rshift4 ACR ; ACR = ACR >> 4

st DM0[r2],r0

done:

sat ACR

nop

move r0,HIGH(ACR)

ret

nop

do_small_fir:

; First we load the shift registers

move ar0,r0

move ar1,r1

mac.shifttaps.sat ACR,DM0[ar0++],r2

mac.shifttaps.sat ACR,DM0[ar0++],r2

7

clr acr

; This one is also unrolled a few times to

; avoid data hazards in the pipeline.

repeat 33, endloop

mul ACR, oldval1,r2

mac ACR, oldval2,r3

mac.shifttaps.sat r5, ACR, DM0[ar0++],r4

mul ACR, oldval1,r2

mac ACR, oldval2,r3

mac.shifttaps.sat r6, ACR, DM0[ar0++],r4

mul ACR, oldval1,r2

mac ACR, oldval2,r3

mac.shifttaps.sat r7, ACR, DM0[ar0++],r4

st DM1[ar1++], r5

st DM1[ar1++], r6

st DM1[ar1++], r7

endloop

ret

8

* 16 bit signed
multiplier

0 1
MSB

0 1 2 3

>>4

0 1

01

SATURATION

0

ACR

01 01

DM0

C1 C2

C4

C5 C6

C7

DM0

OpBC3

TO_RF[15:0]

{{6{RESULT[39]}},RESULT[39:32]}

RESULT[31:16]

C8

16 16

32
FRACGUARD

4040

40

4040

40

oldval2 oldval1

0

RESULT

0

1

2RESULT[15:0]

0 1 2

Control table:

Instruction C1 C2 C3 C4 C5 C6 C7
nop 0 - 0 - - - -
clr ACR 0 - 1 1 0 - -
mac.abs 0 2 1 0 3 0 -
mac 0 2 1 0 2 0 -
move rX,GUARD(ACR) 0 - 0 0 0 0 0
move rX,HIGH(ACR) 0 - 0 0 0 0 1
move rX,LOW(ACR) 0 - 0 0 0 0 2
rshift4 ACR 0 - 1 1 1 0 -
sat ACR 0 - 1 0 0 1 -
mul ACR,oldval1,rX 0 1 1 1 2 0 -
mac ACR,oldval2,rX 0 0 1 0 2 0 -
mac.shifttaps.sat . . . 1 2 1 0 2 1 1

FRACGUARD: out[39:0] = { {7{in[31]}}, in[31:0], 1’b0};

9

SATURATION:

always @* begin

case(in[39:31])

9’h0: out = in;

9’h1ff: out = in;

default: begin

if(in[39]) out = 40’hff80000000;

else out = 40’h007fffffff;

endcase

end

There are many ways to solve this exercise of course. For example, the shift register
design in the schematic above is not really necessary. The solution below does not
require a shift register but solves the problem anyway, under the assumption that indexed
addressing can be used at the same time as the mac instruction is running. (However,
this solution will consume more power than the previous solution, as DM0 will be read
more often.)

alternative_do_small_fir:

add r0,r0,2

set ar0,r0

set ar1,r1

clr acr

; Loop unrolling may be necessary in a real processor but

; not included here for readability.

repeat 99, endloop

mul ACR, DM0[ar0-2],r2

mac ACR, DM0[ar0-1],r3

mac.sat r5, DM0[ar0++],r3

st DM1[ar1++]

endloop:

ret

Note that the question allowed us to send data directly to DM1 from the MAC unit.
None of the solutions above used this fact, but it could allow us to solve the exercise
in different ways such as the following solution which allows us to avoid extra memory
loads without the need for a shift register in hardware.

yet_another_do_small_fir:

set ar0,r0

set ar1,r1

clr acr

ld r5,DM0[ar0++]

ld r6,DM0[ar0++]

10

repeat 33,endloop

ld r7,DM0[ar0++] ; r5 is oldval1,r6 is oldval2, r7 is val

mul ACR,r5,r2

mac ACR,r6,r3

mac.sat DM1[ar1++],r7, r4

ld r5,DM0[ar0++] ; r6 is oldval1, r7 is oldval2, r5 is val

mul ACR,r6,r2

mac ACR,r7,r3

mac.sat DM1[ar1++],r5, r4

ld r6,DM0[ar0++] ; r7 is oldval1, r5 is oldval2, r6 is val

mul ACR,r7,r2

mac ACR,r5,r3

mac.sat DM1[ar1++],r6,r4

endloop

ret

Finally, by combining the ld and the mul instruction into one instruction it would be
possible to run this code in slightly more than 300 clock cycles instead of slightly more
than 400 clock cycles without any big changes to the hardware.

11

Question 4

BOTTOM

0 1
0123

0 1=

TOP

BOTTOM

RFRF AR 1 -1 AR

0 1 2 3

{ {8{IMM[7]}}, IMM[7:0] }

Address to memory

0 1

AR

RF

TOP

0 1

RF

C1 C2
C3

C4 C5

0 1

AR

C6

Control table:

Operation C1 C2 C3 C4 C5 C6
OP1 - - 0 0 0 0
OP2 0 2 0 0 0 1
OP3 1 0 2 0 0 1
OP4 1 0 2 0 0 0
OP5 1 1 2 0 0 1
OP6 1 1 2 0 0 0
OP7 1 3 0 0 0 1
OP8 0 3 0 0 0 1
OP9 (Modulo) 1 0 3 0 0 1
OP10 (Load AR) - - 1 0 0 -
OP11 (Load TOP) - - 0 0 1 -
OP12 (Load BOTTOM) - - 0 1 0 -

Comments: The original operation list does not include a way to load the address
register. However as such an operation is necessary to actually use the modulo addressing
mode, you need to include it anyway...

Question 5

a) No guard bits are required (|0.25|+ |0.125|+ | − 0.25| < 1)

b) See the text book.

12

c)

out[15:0] = in[19:5] + in[4];

Unfortunately there was a typo in the original question. It was intended that question c
should say that a 20 bit two’s complement number in Q5.15 format should be rounded
to Q5.10 format. (Due to this typo, part c was corrected fairly generously.)

Revision history

• V1.1: Fix repeat bug in Q3 (We should repeat 100 times, not 25) Noticed by
Niklas Lundgren.

• V1.2: Added forgotten control table in exercise 2.

• V1.2: Fixed ABS bug in exercise 2. (INV(X)+1 should be used instead of
INV(X)+1+1.) Noticed by Daniel Björklund.

• V1.3: Forgot the C6 mux in Q4. Noticed by Jeremia Nyman.

• v1.4: Fixed typo for jump.eq in Q3. Noticed by Rakesh Praveen.

13

