
Solutions for TSEA26 exam on 2009-10-22 (v1.1)

Andreas Ehliar

October 23, 2012

Question 1

Note: All wires are 5 bits wide unless otherwise noted. All mux control signals are 1 bit
wide.

Control table

Instruction Ca Cb Cc Cd Ce
ABS(A−B) 1 1 1 x 0
MAX(A,B) 1 1 x 0 1
MIN(A,B) 1 1 x 1 1

1



SAT box

case(in[4:3])

2’b00: out[3:0] = in[3:0];

2’b01: out[3:0] = 4’b0111;

2’b10: out[3:0] = 4’b1000;

2’b11: out[3:0] = in[3:0];

endcase

Question 2

a) Instruction set

clracr0: Clear accumulator 0

mac0: ACR0 = ACR0 + fracmul(dm0,dm1)

sat0: ACR0 = saturate(ACR0)

getacrh: Rx = ACR0 (high)

getacrl: Rx = ACR0 (low)

loadacrx: ACRx = RF (fractional)

mac abs: As mac0, but select ACRx based on sign of fracmul(dm0,dm1)

abs1: ACR1 = abs(ACR1)

getsrx: RF = SAT(ROUND(ACRx))

b) Implementation

Note that there is no need to divide ACR0 and ACR1 into ACR0H, ACR0L, ACR1H and
ACR1L here. (Although no points will be deducted if you have done this.)

Also note that we only need a 16x16 bit multiplier in this case since we know that we are
only going to use fractional multiplication.

Also, we don’t really need as many as 8 guard bits here since we know that we will never
repeat more than 32 times, but this was not intentional from my side. (If you use less than
8 guard bits you would need to motivate this.)

2



Ca Cb Cc Cd Ce Cf Cg Ch Ca Cb Cc Cd Ce Cf Cg Ch
clracr0 0 2 x x x x x x loadacr1 3 0 x x x x x x
mac0 2 2 0 1 0 0 x 2 mac abs 2 1 x 0 0 0 x 2
sat0 2 2 0 1 0 1 x 0 abs1 3 1 1 1 1 0 x 0
getacrh 3 2 0 1 0 0 0 0 getsr0 3 2 0 1 0 1 0 1
getacrl 3 2 0 1 0 0 1 0 getsr1 3 2 1 1 0 1 0 1
loadacr0 0 2 x x x x x x

3



Guard8 box

out[39:0] = { {8{in[15]}}, in[15:0], 16’b0 };

Fractional box

out[39:0] = { {7{in[31]}}, in[31:0], 1’b0};

ROUND1 box

out[39:0] = {24’b0, 1’b1, 15’b0};

SATURATE box

if (Cf) begin

if (in[39:31] == 9’b000000000) begin

out = in;

end else if (in[39:31] == 9’b111111111) begin

out = in;

end else if (in[39] == 1) begin

out = 40’hff80000000;

end else begin // in[39] == 0

out = 40’h007fffffff;

end

end else begin

out = in;

end

Question 3

a) See the course literature

b) All inputs on a large data memory in an ASIC are registered. This means that it is
more important to minimize the delay of signals connected to the output of a memory
than the inputs.

4



c) An example of a read-after-write data hazard is when an instruction is trying to read
a value written by a previous instruction which is not yet available in the register
file. Two examples of how to handle this is to stall the pipeline or to use register
forwarding/bypass. (Then there are Write-After-Write (WAW) and Write-After-Read
(WAR) hazards, but there is no need to write an essay on this question.)

d) The worst case is (−1 ×−1) × 13. To handle this case, 4 guard bits are required.

e) |11111011 (-5)

|0000000

|000000

+|11011 (-5*8)

-------+--------

IGNORED|11010011 (-45)

f) The same hardware can be used for both fractional and integer addition without any
changes.

g) When using fractional multiplication we may multiply −1 with −1 and get 1, which
cannot be represented in fractional format.

Question 4

5



c) The version with the unsigned multiplier is obviously worse due to the much higher
hardware cost.

Question 5

Operation Ca Cb Cc Cd Ce Cf Cg Ch
0000 1 0 0 0 0 x x x
0100 0 0 0 0 0 x 0 x
0110 2 0 0 0 0 0 2 2
1000 0 0 0 0 0 0 3 3
1011 0 2 0 0 0 1 2 1

Question 6

a)

This is one possible version of pseudo assembly code for Read1bit().

LOAD R0, [R15] // CurrentAddress is in R15

LEFTSHIFT R1, 1, R14 // 1 << CurrentBit (which is in R14)

6



AND R0, R0, R1 // Memval & Bitmask

BNE BITWAS1

SET R0,1 // Set Bit = 1 in delay slot

SET R0,0 // Z flag was set

BITWAS1:

ADD R14,1,R14 // CurrentBit++

CMP R14,16

BNE NO_NEW_WORD

NOP

SET R14,0 // CurrentBit = 0

ADD R15,1,R15 // CurrentAddress++

NO_NEW_WORD:

RET // Return value is in R0

b)

Assumptions:

• The processor has full forwarding.

• A conditional branch is predicted as not taken. If this is wrong, it costs 3 clock cycles
to flush the pipeline.

• A load from memory takes 2 clock cycles to complete. The processor will stall if the
program tries to use the loaded value too early.

• A return takes 3 clock cycles to complete.

Best case: The first BNE is not taken. The second BNE is not taken. The number of
executed instructions are: 13. Plus 1 extra clock cycle for the load and 2 extra clock cycles
for the return. The best case is 16 clock cycles.

Worst case: Both BNEs are taken. The number of executed instructions are: 10. Plus 1
extra clock cycle for the load, 2 extra clock cycles for the return, and 2 × 3 extra clock
cycles to flush the pipeline when both BNEs are wrong. The worst case is therefore 19
clock cycles.

7



c)

Besides the instruction decoder you would need to change the AGU and add some logic
after the memory.

d)

• The AGU has to be modified to support a 4-bit counter used to index bits.

• After the memory you should insert a multiplexer to select the correct bit as indicated
by the CurrentBit signal.

8



Revision history

• v1.0: Initial revision

• v1.1: Fixed typo in control table for Q5 operation 1000. Cg shold be 3, not x. Thanks
to Andreas Öhlin for noticing this.

9


